ADDITIVE MANUFACTURING SUPPORT MATERIAL
    3.
    发明公开

    公开(公告)号:US20240110017A1

    公开(公告)日:2024-04-04

    申请号:US18196884

    申请日:2023-05-12

    IPC分类号: C08J3/075 B33Y70/00 C09D11/04

    摘要: This document describes a process of producing gel microparticles, which are consistent in size and morphology. Through the process of coacervation, large volumes of gel microparticle slurry can be produced by scaling up reactor vessel size. Particles can be repeatedly dehydrated and rehydrated in accordance to their environment, allowing for the storage of particles in a non-solvent such as ethanol. Gel slurries exhibit a Bingham plastic behavior in which the slurry behaves as a solid at shear stresses that are below a critical value. Upon reaching the critical shear stress, the slurry undergoes a rapid decrease in viscosity and behaves as a liquid. The rheological behavior of these slurries can be adjusted by changing the compaction processes such as centrifugation force to alter the yield-stress. The narrower distribution and reduced size of these particles allows for an increase in FRESH printing fidelity.

    Additive manufacturing support material

    公开(公告)号:US11692070B2

    公开(公告)日:2023-07-04

    申请号:US16603158

    申请日:2018-04-05

    摘要: This document describes a process of producing gel microparticles, which are consistent in size and morphology. Through the process of coacervation, large volumes of gel microparticle slurry can be produced by scaling up reactor vessel size. Particles can be repeatedly dehydrated and rehydrated in accordance to their environment, allowing for the storage of particles in a non-solvent such as ethanol. Gel slurries exhibit a Bingham plastic behavior in which the slurry behaves as a solid at shear stresses that are below a critical value. Upon reaching the critical shear stress, the slurry undergoes a rapid decrease in viscosity and behaves as a liquid. The rheological behavior of these slurries can be adjusted by changing the compaction processes such as centrifugation force to alter the yield-stress. The narrower distribution and reduced size of these particles allows for an increase in FRESH printing fidelity.