Abstract:
A cooling system is disclosed so that an operator cabin can be cooled even if the engine is off. An accumulator can be used to store high-pressure refrigerant until its release. When the compressor is off, the accumulator can release the high pressure refrigerant through the pressure reducer and to the evaporator where heat in the operator cabin can be removed by the refrigerant. An absorption bed with activated carbon can be used to adsorb the refrigerant from the evaporator in order to create a pressure gradient in A/C system. The refrigerant in the accumulator can also be used to subcool a refrigerant in the condenser through a heat exchanger. This allows the operator cabin to be cooled faster up on engine start up. The adsorption bed can also be used to create a pressure gradient in the cooling system.
Abstract:
An air-conditioning system including a primary circuit and a secondary circuit is provided. The primary circuit includes a flow of refrigerant, an evaporator and a chiller configured to exchange heat between a coolant and the refrigerant. The secondary circuit includes a heat exchanger in fluid communication with the chiller to receive the coolant. The heat exchanger includes a phase change material in heat exchange relationship with the coolant, such that the coolant exchanges heat with the phase change material to store thermal energy in the phase change material. The air-conditioning system is implemented in a machine in which during an idle-off state, the stored energy in the heat exchanger is discharged to provide an air-conditioning effect.
Abstract:
A cooling system is disclosed so that an operator cabin can be cooled even if the engine is off. An accumulator can be used to store high-pressure refrigerant until its release. When the compressor is off, the accumulator can release the high pressure refrigerant through the pressure reducer and to the evaporator where heat in the operator cabin can be removed by the refrigerant. An absorption bed with activated carbon can be used to adsorb the refrigerant from the evaporator in order to create a pressure gradient in A/C system. The refrigerant in the accumulator can also be used to subcool a refrigerant in the condenser through a heat exchanger. This allows the operator cabin to be cooled faster up on engine start up. The adsorption bed can also be used to create a pressure gradient in the cooling system.
Abstract:
An air-conditioning system including a primary circuit and a secondary circuit is provided. The primary circuit includes a flow of refrigerant, an evaporator and a chiller configured to exchange heat between a coolant and the refrigerant. The secondary circuit includes a heat exchanger in fluid communication with the chiller to receive the coolant. The heat exchanger includes a phase change material in heat exchange relationship with the coolant, such that the coolant exchanges heat with the phase change material to store thermal energy in the phase change material. The air-conditioning system is implemented in a machine in which during an idle-off state, the stored energy in the heat exchanger is discharged to provide an air-conditioning effect.
Abstract:
An idle reduction engine shutdown and restart system for a machine is disclosed. The machine can include an engine operably connected to a drivetrain including ground engaging propulsion members. The drivetrain can be configured to transmit mechanical energy between the engine and the ground engaging propulsion members. The idle reduction engine shutdown and restart system for the machine can include a starter operatively associated with the engine and configured to effectuate ignition of the engine. The idle reduction engine shutdown and restart system for the machine can further include an idle reduction engine shutdown and restart controller electronically and controllably connected to the engine and configured to shut down the engine in an engine shutdown mode. The idle reduction engine shutdown and restart controller can additionally be electronically and controllably connected and configured to actuate the engine and the starter to start the engine in one or more of an initial engine start mode and one or more engine restart modes.
Abstract:
An idle reduction engine shutdown and restart system for a machine is disclosed. The machine can include an engine operably connected to a drivetrain including ground engaging propulsion members. The drivetrain can be configured to transmit mechanical energy between the engine and the ground engaging propulsion members. The idle reduction engine shutdown and restart system for the machine can include a starter operatively associated with the engine and configured to effectuate ignition of the engine. The idle reduction engine shutdown and restart system for the machine can further include an idle reduction engine shutdown and restart controller electronically and controllably connected to the engine and configured to shut down the engine in an engine shutdown mode. The idle reduction engine shutdown and restart controller can additionally be electronically and controllably connected and configured to actuate the engine and the starter to start the engine in one or more of an initial engine start mode and one or more engine restart modes.