Abstract:
A composition and process for the manufacture thereof for use in a hybrid building material comprising at least in part Syngenite (K2Ca(SO4)2.H2O) and Struvite-K (KMgPO4.6H2O). Specified constituents, including magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate) are mixed in predetermined ratios and the reaction proceeds through multiple phases reactions which at times are proceeding simultaneously and in parallel and reaction may even compete with each other for reagents if the Struvite-K reaction is not buffered to slow down the reaction rate). A number of variable factors, such as water temperature, pH mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined and specified ratios of Struvite-K and Syngenite may be provided for specified purposes, optimized in respect of stoichiometry to reduce the combined heat of formation to non-destructive levels.
Abstract:
A composition and process for manufacture thereof used in hybrid inventive building materials comprising Syngenite (K2Ca(SO4)2.H2O) and Struvite-K (KMgPO4.6H2O). Starting constituents include magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate), mixed in predetermined ratios, cause reactions to proceed through multiple phases, which reactions variously are proceeding simultaneously and in parallel. Variables, e.g., water temperature, pH, mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined weight percent and specified ratios of Struvite-K and Syngenite are provided for building products used for specified purposes. Reactions are optimized in stoichiometry and additives to reduce the combined heat of formation to non-destructive levels. Various additives help control and guide reactions. Building products, such as board panels, include the resultant composition. A significant amount of the composition is disposed adjacent a building panel face.
Abstract:
An example plasterboard includes a layer of hardened plaster material having a first surface and an opposed second surface and a layer of molded material having a surface that faces away from the layer of hardened plaster material. The surface of the layer of molded material has one or more raised features. The plasterboard also includes a liner between the first surface of the layer of hardened plaster material and the layer of molded material. Other examples include a method of forming such plasterboards and a method for installing such plasterboards.
Abstract:
An example plasterboard includes a layer of hardened plaster having a first surface and an opposed second surface, a layer of polymer material having particles of one or more cementitiously-active substances mixed therein, and a liner between the first surface of the layer of hardened plaster and the layer of polymer material. Another example is a method of forming such a plasterboard. The method includes loading an extruder with the polymer material having the particles of one or more cementitiously active substances mixed therein, extruding the polymer material through a die to form the layer of polymer material on a surface of the liner, contacting with a layer of wet plaster material, the liner having the polymer material applied thereon such that the surface of the liner faces away from the wet plaster material, and drying the layer of wet plaster material to form the layer of hardened plaster.
Abstract:
An example plasterboard includes a layer of hardened plaster material having a first surface and an opposed second surface and a layer of molded material having a surface that faces away from the layer of hardened plaster material. The surface of the layer of molded material has one or more raised features. The plasterboard also includes a liner between the first surface of the layer of hardened plaster material and the layer of molded material. Other examples include a method of forming such plasterboards and a method for installing such plasterboards.
Abstract:
A composition and process for the manufacture thereof for use in a hybrid building material comprising at least in part Syngenite (K2Ca(SO4)2.H2O) and Struvite-K (KMgPO4.6H2O). Specified constituents, including magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate) are mixed in predetermined ratios and the reaction proceeds through multiple phases reactions which at times are proceeding simultaneously and in parallel and reaction may even compete with each other for reagents if the Struvite-K reaction is not buffered to slow down the reaction rate). A number of variable factors, such as water temperature, pH mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined and specified ratios of Struvite-K and Syngenite may be provided for specified purposes, optimized in respect of stoichiometry to reduce the combined heat of formation to non-destructive levels.
Abstract:
A composition and process for the manufacture thereof for use in a hybrid building material comprising at least in part Syngenite (K2Ca(SO4)2.H2O) and Struvite-K (KMgPO4·6H2O). Specified constituents, including magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate) are mixed in predetermined ratios and the reaction proceeds through multiple phases reactions which at times are proceeding simultaneously and in parallel and reaction may even compete with each other for reagents if the Struvite-K reaction is not buffered to slow down the reaction rate). A number of variable factors, such as water temperature, pH mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined and specified ratios of Struvite-K and Syngenite may be provided for specified purposes, optimized in respect of stoichiometry to reduce the combined heat of formation to non-destructive levels.
Abstract:
An example plasterboard includes a layer of hardened plaster having a first surface and an opposed second surface, a layer of polymer material having particles of one or more cementitiously-active substances mixed therein, and a liner between the first surface of the layer of hardened plaster and the layer of polymer material. Another example is a method of forming such a plasterboard. The method includes loading an extruder with the polymer material having the particles of one or more cementitiously active substances mixed therein, extruding the polymer material through a die to form the layer of polymer material on a surface of the liner, contacting with a layer of wet plaster material, the liner having the polymer material applied thereon such that the surface of the liner faces away from the wet plaster material, and drying the layer of wet plaster material to form the layer of hardened plaster.
Abstract:
An example plasterboard includes a layer of hardened plaster material having a first surface and an opposed second surface and a layer of molded material having a surface that faces away from the layer of hardened plaster material. The surface of the layer of molded material has one or more raised features. The plasterboard also includes a liner between the first surface of the layer of hardened plaster material and the layer of molded material. Other examples include a method of forming such plasterboards and a method for installing such plasterboards.
Abstract:
An example plasterboard includes a layer of hardened plaster material having a first surface and an opposed second surface and a layer of molded material having a surface that faces away from the layer of hardened plaster material. The surface of the layer of molded material has one or more raised features. The plasterboard also includes a liner between the first surface of the layer of hardened plaster material and the layer of molded material. Other examples include a method of forming such plasterboards and a method for installing such plasterboards.