摘要:
A method of finding defects in sealing material formed as a frame line on a glass plate includes irradiating the frame line of sealing material. A temperature of the irradiated sealing material is measured and a change of the temperature caused by a nonuniformity in sealing material is detected. Another aspect features a method of hermetically sealing a thin film device between glass plates. Sealing material is dispensed on a cover glass plate in the form of a frame line cell. The sealing material is pre-sintered onto the cover glass plate and cooled. A laser beam is moved around the frame line on the sealing material. A temperature of the sealing material contacted with the laser beam is measured. A change in the temperature (ΔT) caused by a nonuniformity in the sealing material is measured. Further aspects include a feedback process, infrared imaging and use of delta temperature data to increase sensitivity of temperature measurement data.
摘要:
A display device (10) including a first substrate (12), a second substrate (16), an OLED element (18), and a wall (14) that contains glass. A sealed portion (6) is formed in the wall and between the first substrate and the second substrate so as to produce a hermetic seal. The sealed portion is disposed in the wall so that unsealed portions (7,8) are disposed on opposite sides of the sealed portion. A width (3) of the sealed portion is from about 35% to about 77.3% of a width (2) of the wall. The sealed portion may be formed by heating the wall with a laser beam (32) so that a thickness (1) of the wall lies within the depth of focus (34) of the laser beam. Further, the width (36) of the laser beam can be less than or equal to the width of the wall.
摘要:
Packages for elements, e.g., OLEDs, that are temperature sensitive are provided. The packages have a first glass substrate (12), a second glass substrate (16), and a wall (14) that separates the first and second substrates (12,16) and hermetically seals at least one temperature sensitive element (18,28,36) between the substrates (12,16). The wall (14) comprises a sintered frit and at least a portion of the wall is laser sealed to the second substrate (16) by melting a glass component of the sintered frit. The minimum width (40) of the laser-sealed portion of the wall (14) at any location along the wall (14) is greater than or equal to 2 millimeters so as to provide greater hermeticity and strength to the package. The laser sealing is performed without substantially degrading the temperature sensitive element(s) (18,28,36) housed in the package.
摘要:
Packages for elements, e.g., OLEDs, that are temperature sensitive are provided. The packages have a first glass substrate (12), a second glass substrate (16), and a wall (14) that separates the first and second substrates (12,16) and hermetically seals at least one temperature sensitive element (18,28,36) between the substrates (12,16). The wall (14) comprises a sintered frit and at least a portion of the wall is laser sealed to the second substrate (16) by melting a glass component of the sintered frit. The minimum width (40) of the laser-sealed portion of the wall (14) at any location along the wall (14) is greater than or equal to 2 millimeters so as to provide greater hermeticity and strength to the package. The laser sealing is performed without substantially degrading the temperature sensitive element(s) (18,28,36) housed in the package.
摘要:
Packages for elements, e.g., OLEDs, that are temperature sensitive are provided. The packages have a first glass substrate (12), a second glass substrate (16), and a wall (14) that separates the first and second substrates (12,16) and hermetically seals at least one temperature sensitive element (18,28,36) between the substrates (12,16). The wall (14) comprises a sintered frit and at least a portion of the wall is laser sealed to the second substrate (16) by melting a glass component of the sintered frit. The minimum width (40) of the laser-sealed portion of the wall (14) at any location along the wall (14) is greater than or equal to 2 millimeters so as to provide greater hermeticity and strength to the package. The laser sealing is performed without substantially degrading the temperature sensitive element(s) (18,28,36) housed in the package.
摘要:
Packages for elements, e.g., OLEDs, that are temperature sensitive are provided. The packages have a first glass substrate (12), a second glass substrate (16), and a wall (14) that separates the first and second substrates (12,16) and hermetically seals at least one temperature sensitive element (18,28,36) between the substrates (12,16). The wall (14) comprises a sintered frit and at least a portion of the wall is laser sealed to the second substrate (16) by melting a glass component of the sintered frit. The minimum width (40) of the laser-sealed portion of the wall (14) at any location along the wall (14) is greater than or equal to 2 millimeters so as to provide greater hermeticity and strength to the package. The laser sealing is performed without substantially degrading the temperature sensitive element(s) (18,28,36) housed in the package.
摘要:
Lighting units and light fixtures incorporating lighting units having light-diffusing optical fiber are disclosed. Lighting units include a light source, at least one light-diffusing optical fiber optically coupled to the light source, and a support plate. The at least one light-diffusing optical fiber scatters light that is optically coupled into the at least one light-diffusing optical fiber from the light source. The support plate has a retention groove to which a portion of the at least one light-diffusing optical fiber is coupled. The support plate also includes a perimeter. A groove length of the retention groove is greater than the perimeter of the support plate.
摘要:
An illuminated color display panel having at least one light diffusing waveguide, and a transparent panel having at least one luminophore provided in a predetermined pattern on at least one major planar surface of the transparent panel is provided. Light from at least one light source is coupled to the waveguide and light from the waveguide is coupled to the panel at or adjacent at least one edge of the panel. The resulting illuminated color display panel is useful for general lighting purposes and signage.
摘要:
Light diffusing optical fibers for use in illumination applications and which have a uniform color gradient that is angularly independent are disclosed herein along with methods for making such fibers. The light diffusing fibers are composed of a silica-based glass core that is coated with a number of layers including both a scattering layer and a phosphor layer.
摘要:
Systems and methods for coupling light into a transparent sheet. The systems include a light source and a light-diffusing optical fiber optically coupled to the light source. The light-diffusing optical fiber has a core, a cladding and a length, with at least a portion of the core comprising randomly arranged voids configured to provide substantially continuous light emission from the core and out of the cladding along at least a portion of the length, and into the transparent sheet.