Abstract:
Magnesium ammonium phosphate (struvite), suitable for use as a slow-release fertilizer for example, is produced by mixing animal manure with a pre-specified amount of a magnesium-rich compound. A pre-specified amount of an enzyme, such as an urease or uricase, is added to the resultant mixture. The temperature and pH of this mixture are maintained within a pre-specified range to facilitate precipitation of the magnesium ammonium phosphate. Optionally, the enzyme-supplemented mixture may be inoculated with a pre-specified amount of bacteria, such as Bacillus sphaericus, Bacillus globisporus, or Bacillus fusiformis, or a species of Bacillus identified as Bacillus sp. SB1. This bacteria-supplemented mixture is then allowed to incubate for about 14 days to form struvite. Alternatively, a pre-specified amount of phosphatase, an enzyme promoting the formation of phosphate from phosphorus-rich organic compounds, may be added with the first enzyme to further accelerate the process and increase the yield of struvite crystals.
Abstract:
A method for fabricating and forming a continuous covered area, such as a sidewalk or patio, employing vertically interlocking tessellated components. One embodiment, termed PORTAPAVE™, achieves this interlocking via an array of uniquely configured two-sectioned pavers. Each paver has a first section of a first shape and a second section of a second shape impressed upon the first section and bonded together. In one embodiment, first sections of pavers are installed in a bottom layer to form a cavity between them having the same shape as the second section of a paver that is inverted onto the pavers of the bottom layer, thus providing a top layer. Each inverted paver in this top layer is fitted to interlock in that cavity formed between the un-inverted pavers in the bottom layer.
Abstract:
A barrier to fluid passage is embedded within, instead of atop, porous material to retain the durability of the surface of the porous material. In one embodiment, a thin set mortar is applied to a concrete slab. A pleated metal foil is pressed into the wet mortar and a bond is established. The mortar is allowed to set and a top, or finish, section of concrete is then poured over the foil and finished conventionally. Provisions are made for sealing expansion joints in concrete slab floors and at the juncture of floor and wall. The foil may be provided in multiple layers to provide a mechanical bond via mortar oozing through perforations or along pleats in each of the top and bottoms layers, while providing a solid layer through which a fluid will not pass, at least in one direction.
Abstract:
An Electro-Osmotic Pulse (EOP) system is used to dewater structure, both natural and manmade. Preferably, the system employs durable, dimensionally stable anodes affixed to structure in a configuration designed to maximize electrical contact with the structure and minimize electrode gas generation. The anodes and cathodes are attached to a DC power supply that provides a voltage potential between them. DC power is cycled until the structure has been sufficiently treated. Select embodiments employ perforated metal pipes as cathodes for the purpose of transport and drainage of fluids. In select embodiments of the present invention, the cathodes are connected to variable resistors designed to reduce opportunity for corrosion of buried metal objects in the vicinity of the EOP system. Select embodiments employ a pre-specified pulse train of DC voltage pulses to migrate water from under a crawl space while moving available cations in the soil. Select embodiments also protect large structures such as concrete dams.
Abstract:
A backstop for decelerating and trapping projectiles includes a support structure having at least one bin shielded from incoming rounds. A trapping medium, such as a resilient granular ballistic medium and a hydrated SAP gel, is disposed contiguously on an upper surface and within the bins. Bins are defined by transverse baffles spanning the width of the backstop. The baffles are preferably constructed of a non-ricochet material. Vibrations will urgetrapped rounds downwards into the bins. In embodiments, the lower surface of one or more bins declines toward either or both sides of the backstop, such that vibration urges spent rounds towards collection points along the sides of the backstop. Access ports may be provided in the backstop sidewalls proximate these collection points to allow for removal of spent rounds. The volume removed may be filtered to reclaim projectile trapping medium for reuse.
Abstract:
A method providing a self-dispensing additive for buffering a projectile trapping medium and passivating spent projectiles trapped therein. The additive is a buffering compound formed as blocks of low-density foamed-concrete that self-dispenses the additive when contacted by the fired projectiles. The blocks contain dry components that may include one or more of low-solubility phosphate compounds, low-solubility aluminum compounds, iron compounds, sulfate compounds, and calcium carbonate mixed with a cementing material, water, and an aqueous-based foam in substantially stoichiometric amounts. The aqueous-based foam is added in a quantity sufficient to adjust the density of the block to neutral buoyancy in the projectile-trapping medium. The additive chemically stabilizes the medium while also passivating projectiles, in particular heavy-metal projectiles, trapped in the medium.
Abstract:
A continuous covered area, such as a sidewalk or patio, is formed by vertically interlocking tessellated components. One embodiment, termed PORTAPAVE™, achieves this interlocking via an array of uniquely configured two-sectioned pavers. Each paver has a first section of a first shape and a second section of a second shape impressed upon the first section and bonded together. In one embodiment, first sections of pavers in an installed bottom layer form a cavity between them having the same shape as the second section of a paver that is inverted onto the pavers of the bottom layer, thus providing a top layer. Each inverted paver in this top layer is fitted to interlock in that cavity formed between the un-inverted pavers in the bottom layer. Also provided is a method of making the components, e.g., pavers, and a method of installing them.
Abstract:
A modular bullet trap cover element generally includes a shell filled with a projectile trapping medium, preferably a mixture of a resilient granular ballistic medium and a hydrated super absorbent polymer (SAP) gel. The shell may be made of any of a number of fabric or polymeric materials. In embodiments, the shell includes at least two bags, an inner bag and at least one outer bag, each of which has an open end and a sealed end, connected to one another such that the outer bags may be inverted over the inner bag to cover at least a portion thereof. The modular cover element is formed by filling the inner bag with the projectile trapping medium and then inverting the outer bags to produce a multi-layer shell. In embodiments, the outer bags and inner bag are rotatably connected, permitting the outer bags to be rotated with respect to the inner bag such that bullet holes in the inner and outer bags no longer line up with each other. Several modular cover elements may be fixedly or releasably interconnected, preferably in a mattress-like arrangement, to form a bullet trap cover.
Abstract:
Provided are structural material for bullet traps and the like, a method of producing it, and a structure comprising it. The material is suitable for entraining and immobilizing projectiles and fine particles in a sticky gel. It is prepared by mixing cement with a thickener to form a dry mixture. Water is mixed with a fine aggregate in a mixer. The dry mixture is combined with the aqueous mixture in the mixer to form a slurry. Calcium phosphate and an alumina compound are added, mixing each separately until homogeneous. The density of the mixture is measured and an aqueous foam is added to adjust the density to a pre-specified level. Fibers are mixed into the adjusted mixture to form a homogeneous slurry that may be poured into a mold or in place at a construction site. Upon curing, the material may be used as a structural component.
Abstract:
Portland cement particles having the characteristics of slow hardening is oduced by a process of heat treating portland cement particles in the temperature range from 1500.degree. to 3000.degree. C. for from 0.5 to 10 seconds and cooling to obtain particles containing an amorphous, glassy shell as an outside layer.