Abstract:
An electro-kinetic air mover for creating an airflow using no moving parts. The electro-kinetic air mover includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
An electro-kinetic air mover for creating an airflow using no moving parts. The electro-kinetic air mover includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
An electro-kinetic air mover for creating an airflow using no moving parts. The electro-kinetic air mover includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
An electro-kinetic air conditioner for removing particulate from the air creates an airflow using no moving parts. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
Ozone output in ion wind devices using one or more emitters (10) and an array of collectors (20) (accelerators) may be reduced through catalytic conversion of the produced ozone back to oxygen by using various materials placed in or downstream from the airflow, such as a manganese dioxide coating on the accelerator substrate elements. Precious metal or activated carbon coatings may also be used for the purpose of converting ozone to oxygen.
Abstract:
An electro-kinetic or electro-static apparatus for moving fluid includes an enlogated electrode energizable with respect to at least one other electrode to generate ions and thereby motivate fluid flow there between. A cleaning device is positioned to frictionally engage at least two opposing surfaces of the elongated electrode. The cleaning device is movable along a length of the elongated electrode to thereby remove detrimental material from the at least two opposing surfaces of the elongated electrode. The cleaning device can be substantially off-center relative to the elongated electrode to frictionally bind upon the elongated electrode during movement of the cleaning device.
Abstract:
A method to limit ozone production in wind ion devices while simultaneously realizing incidents of high acceleration in such devices varies the high voltage potential across the array of emitter(s) (10) and collectors (20) over time in such a manner as to generate a wave effect of airflow. The variance may be achieved by switching, ramping, or gating the high voltage potential delivered to the array.
Abstract:
An electro-kinetic or electro-static apparatus for moving fluid includes an enlogated electrode energizable with respect to at least one other electrode to generate ions and thereby motivate fluid flow there between. A cleaning device is positioned to frictionally engage at least two opposing surfaces of the elongated electrode. The cleaning device is movable along a length of the elongated electrode to thereby remove detrimental material from the at least two opposing surfaces of the elongated electrode. The cleaning device can be substantially off-center relative to the elongated electrode to frictionally bind upon the elongated electrode during movement of the cleaning device.