摘要:
A portable bar code scanner includes a support member and a housing member rotatably mounted on the support member and having a pair of sloping supporting surfaces oriented at an angle to each other and a floor portion on which is mounted a reflecting mirror. One or both of the sloping supporting surfaces may include a transparent substrate. A source of scanning light beams such as a hand-held scanner is mounted adjacent the other sloping supporting surface for projecting a plurality of scanning light beams in the form of a scan pattern at the reflecting mirror which reflects the scan pattern onto the transparent substrate over which a bar code label is passed enabling the scanning light beams to scan the bar code label. The housing member may be rotated up to one hundred and eighty degrees to position the transparent substrate in a number of scanning positions.
摘要:
A bar code scanner includes a window and a rotary spinner mounted therebelow having a plurality of circumferentially adjoining mirrored facets for sweeping light along a scanned arc. A light source projects a scan beam on the spinner, and a plurality of pattern mirrors are optically aligned with the spinner along the scanned arc in a forward path for diverting the scan beam outwardly through the window to a bar code for effecting a scattered beam therefrom. A collection mirror is optically aligned with the spinner along the scanned arc for receiving the scattered beam in a return path from the pattern mirrors and spinner in turn. A detector is optically aligned with the collection mirror for receiving the scattered beam, and a decoder is provided for decoding the scattered beam.
摘要:
An optical scanner which employs a special lens to maximize the percentage of focused laser light that passes through a collimating aperture. The optical scanner also includes a laser diode and a housing containing the laser diode and having a wall with the aperture therethrough for collimating light from the lens. The lens may be a gradient index (grin) lens, a bi-zonal lens, or an axicon lens. Another scanner is disclosed which employs an axicon lens to focus light reflected from an article having a bar code label to a detector for a range of article distances from the scanner.
摘要:
A method for optimizing the reading ability of an omnidirectional optical scanner for various bar code label aspect ratios which can effectively double the angular coverage of an ordinary scan module. For high aspect ratio bar code labels, the method involves increasing the speed ratio between a first scanner motor within a scan module and a second scanner motor within a tilted mirror assembly by decreasing the speed of the second scanner motor by a predetermined amount. For other bar code labels, the method involves decreasing the speed ratio between the first scanner motor and the second scanner motor by increasing the speed of the second scanner motor by the predetermined amount. The method uses programming tags and speed control circuitry to change the speed of the second motor. The method also includes the steps of decreasing the swipe speed of articles having high aspect ratio bar code labels and increasing the swipe speed of other articles.
摘要:
An optical scanner for reading two-dimensional bar code labels. A rotating reflector directs a laser beam towards a plurality of pattern mirrors during a first mode of operation to produce a plurality of different scan lines forming a multi-line scan pattern for collecting light from an article having a one-dimensional bar code label, and directs the laser beam towards one of the pattern mirrors during a second mode of operation to produce a single scan line for collecting light from an article having a two-dimensional bar code label. A single tilted mirror assembly, having a motor for rotating a drive shaft and a mirror mounted at an angle to the drive shaft, reflects the plurality of different scan lines towards the article having the one-dimensional bar code label during the first mode of operation, and reflects the one scan line from the scan module towards the article having the two-dimensional bar code label during the second mode of operation.
摘要:
A compact optical scanning system includes a rotating polygon having a plurality of curved mirror portions and a plurality of mirror facets, a collection mirror member having a pair of reflective surfaces and a source of scanning light beams which projects the scanning light beams at one of the reflecting surfaces in the collection mirror. By deflecting the scanning light beams off the curved mirror portions, the mirror facets and the pair of reflective surfaces, a single line scan pattern composed of a plurality of single line scan lines each located at a different focal plane will be generated to scan a bar code label. By changing the orientation of the mirror facets together with changing the radius curvature of the curved mirror portions, an axial invariant bow-tie scan pattern composed of multiple scan lines focused at a different focal plane will be generated.
摘要:
An adaptive optics phoropter is aligned with a Badal optometer and an adjustable aperture component to subjectively determine an optimal vision correction as a power profile for an ophthalmic lens or ablating a cornea. The optimal power profile is preferably determined in an iterative process by adjusting the vergence of the Badal optometer and aperture size of the adjustable aperture component for power profiles with presbyopic power zones having different amplitudes, shapes, widths, and/or de-centering. Also included is a method of recursively computing a refractive surface with a regular presbyopic power zone (e.g., according to the optimal power profile) and adding it onto an underlying irregular Zernike-basis-set aberration-corrected surface in a linear fashion for fabricating an ophthalmic lens.
摘要:
Techniques for determining a position for a rotating optical element, or spinner, of a bar code scanner are described. A diffractive element is positioned so as to be struck by a laser beam produced by a laser source and reflected from the spinner when the spinner is in a reference position. The diffractive element diffracts the reflected beam to produce a diffracted line which strikes a reference position photodetector, thereby causing the reference position photodetector to produce a reference position photosignal. The reference position photosignal can be read by a controller to determine when the spinner is in the reference position and used by the controller as a signal to deactivate the laser source. The position of the spinner during its rotation can be computed based on the speed of the spinner and the time elapsed since the occurrence of the reference position photosignal, and the laser source can be activated when timing information indicates that the spinner is in an appropriate position to begin a single line scan pattern and deactivated when the reference position photosignal indicates that the spinner is in the correct position to terminate the single line scan pattern.
摘要:
An adaptive optics phoropter is aligned with a Badal optometer and an adjustable aperture component to subjectively determine an optimal vision correction as a power profile for an ophthalmic lens or ablating a cornea. The optimal power profile is preferably determined in an iterative process by adjusting the vergence of the Badal optometer and aperture size of the adjustable aperture component for power profiles with presbyopic power zones having different amplitudes, shapes, widths, and/or de-centering. Also included is a method of recursively computing a refractive surface with a regular presbyopic power zone (e.g., according to the optimal power profile) and adding it onto an underlying irregular Zernike-basis-set aberration-corrected surface in a linear fashion for fabricating an ophthalmic lens.
摘要:
An adaptive optics phoropter is aligned with a Badal optometer and an adjustable aperture component to subjectively determine an optimal vision correction as a power profile for an ophthalmic lens or ablating a cornea. The optimal power profile is preferably determined in an iterative process by adjusting the vergence of the Badal optometer and aperture size of the adjustable aperture component for power profiles with presbyopic power zones having different amplitudes, shapes, widths, and/or de-centering. Also included is a method of recursively computing a refractive surface with a regular presbyopic power zone (e.g., according to the optimal power profile) and adding it onto an underlying irregular Zernike-basis-set aberration-corrected surface in a linear fashion for fabricating an ophthalmic lens.