摘要:
A tracking system employs magnetic resonance signals to monitor the position and orientation of at least one device such as a catheter within a subject. The device has a plurality of receiver coils which are sensitive to magnetic resonance signals generated in the subject. These signals are detected in the presence of magnetic field gradients and thus have frequencies which are substantially proportional to the location of the coil along the direction of the applied gradient. Signals are detected responsive to sequentially applied mutually orthogonal magnetic gradients to determine the device's position and orientation in several dimensions. The position and orientation of the device as determined by the tracking system is superimposed upon independently acquired medical diagnostic images. One or more devices can be simultaneously tracked.
摘要:
A magnetic resonance (MR) active invasive device system employs a small, high-field polarizing magnet, and a large, possibly low-field magnetic resonance (MR) imaging magnet for the purpose of generating MR angiograms of selected blood vessels. A subject is positioned in a large MR imaging magnet. A catheter is inserted into the patient at or near the root of a vessel tree to be imaged. A fluid, intended to be used as a contrast agent is first cooled and frozen, and then passed through the small high-field polarizing magnet where it becomes highly polarized. The frozen fluid is then heated and melted to physiologic temperatures and introduced into the subject through the catheter. Radiofrequency (RF) pulses and magnetic field gradients are then applied to the patient as in conventional MR imaging. Since the fluid has a larger longitudinal magnetization than tissue which has not passed through the polarizing magnet, the fluid produces a much larger MR response signal than other tissue, resulting in vessel tree images with excellent contrast.
摘要:
A tracking system monitors the position of a device within a subject and superimposes a graphic symbol on a diagnostic image of the subject. Registration of the tracked location with the diagnostic image is maintained in the presence of subject motion by monitoring subject motion and adjusting the display to compensate for subject motion. Motion monitoring can be performed with ultrasonic, optical or mechanical methods. The display can be adjusted by modifying the displayed location of the device or it can be adjusted by translating, rotating or distorting the diagnostic image.
摘要:
A tracking system employs magnetic resonance signals to monitor the position and orientation of a device, such as a catheter, within a subject. The device has an MR active sample and a receiver coil which is sensitive to magnetic resonance signals generated by the MR active sample. These signals are detected in the presence of magnetic field gradients and thus have frequencies which are substantially proportional to the location of the coil along the direction of the applied gradient. Signals are detected responsive to sequentially applied mutually orthogonal magnetic gradients to determine the device's position in several dimensions. The position of the device as determined by the tracking system is superimposed upon independently acquired medical diagnostic images. One or more devices can be simultaneously tracked.
摘要:
A magnetic resonance (MR) active invasive device system employs a small, high-field polarizing magnet, and a large magnetic resonance (MR) imaging magnet for the purpose of generating MR images of selected body cavities. A subject is positioned in a large low-field MR imaging magnet. A substance, intended to be used as a contrast agent is first cooled, and then passed through the small high-field polarizing magnet where it becomes highly polarized. The substance is then heated to physiologic temperatures, vaporized, and introduced into the subject through a transfer conduit as a vapor. Radiofrequency (RF) pulses and magnetic field gradients are then applied to the patient as in conventional MR imaging. Since the vapor is highly polarized, it can be imaged even though it has a much lower density than the surrounding tissue.
摘要:
A tracking system employs magnetic resonance signals to monitor the position of a device such as a catheter within a subject. The device has a receiver coil which is sensitive to magnetic resonance signals generated in the subject. These signals are detected in the presence of magnetic field gradients and thus have frequencies which are substantially proportional to the location of the coil along the direction of the applied gradient. Signals are detected responsive to applied magnetic gradients to determine the position of the device in several dimensions. Sensitivity of the measured position to resonance offset conditions such as transmitter frequency misadjustment, chemical shift and the like is minimized by repeating the process a plurality of times with selected amplitudes and polarities for the applied magnetic field gradient. Linear combinations of the data acquired responsive to the different applied magnetic field gradients are computed to determine the position of the device in three orthogonal dimensions. The position of the device as determined by the tracking system is superimposed upon independently acquired medical diagnostic images.
摘要:
A tracking system employs magnetic resonance signals to monitor the position of a device such as a catheter within a subject. The device has a receiver coil which is sensitive to magnetic resonance signals generated in the subject. These signals are detected in the presence of magnetic field gradients and thus have frequencies which are substantially proportional to the location of the coil along the direction of the applied gradient. Signals are detected responsive to sequentially applied mutually orthogonal magnetic gradients to determine the position of the device in several dimensions. The position of the device as determined by the tracking system is superimposed upon independently acquired medical diagnostic images.
摘要:
A tracking system in which radiofrequency signals emitted by an invasive device such as a catheter are detected and used to measure the position and orientation of the invasive device within a subject. Detection of the radiofrequency signals is accomplished with coils having sensitivity profiles which vary approximately linearly with position. The invasive device has a transmit coil attached near its end and is driven by a low power RF source to produce a dipole electromagnetic field that can be detected by an array of receive coils distributed around a region of interest of the subject. The position and orientation of the device as determined by the tracking system are superimposed upon independently acquired Medical Diagnostic images, thereby minimizing the diagnostic exposure times. One or more invasive devices can be simultaneously tracked.
摘要:
A method of magnetic resonance (MR) fluid flow measurement within a subject employs an invasive device with an RF transmit/receive coil and an RF transmit coil spaced a known distance apart. The subject is positioned in a static magnetic field. The invasive device is positioned in a vessel of a subject in which fluid flow is desired to be determined. A regular pattern of RF transmission pulses are radiated through the RF transmit/receive coil causing it to cause a steady-state MR response signal. Intermittently a second RF signal is transmitted from the RF coil positioned upstream which causes a change in the steady-state MR response signal sensed by the downstream transmit/receive coil. This is detected a short delay time later at the RF receive coil. The time delay and the distance between the RF coils leads directly to a fluid velocity. By exchanging the position of the RF transmit and transmit/receive coils, retrograde velocity may be measured. In another embodiment, more RF coils are employed. The changed MR response signal may be sensed at a number of locations at different times, leading to a measured change in velocity, or acceleration of the fluid.
摘要:
An interactive display system superimposes images of internal structures on a semi-transparent screen through which a surgeon views a patient during a medical procedure. The superimposed image is derived from image data obtained with an imaging system. An invasive device is also tracked and displayed on the semi-transparent screen. A ray extending through the invasive device can also be displayed which shows the intended path of the invasive device. The image is registered with the surgeon's view of the patient and displayed in real-time during a medical procedure. This allows the surgeon to view internal and external structures, the relation between them, the proposed path of the invasive device, and adjust the procedure accordingly. A second embodiment employs stereoscopic viewing methods to provide three-dimensional representations of the radiological images superimposed on the semi-transparent screen through which the surgeon views the patient.