Abstract:
A signal processing apparatus is provided. The signal processing apparatus includes an inner-code decoder, an outer-code decoder, and an error detection unit. The inner-code decoder decodes an input data stream to generate a first output data stream, wherein the input data stream is coded using a concatenated coding scheme including an outer coding and an inner coding. The outer-code decoder decodes the first output data stream to generate a second output data stream. The error detection unit performs an error detection upon the second output data stream to generate an error detection result. The decision logic sets error indication information of the second output data stream according to at least the error detection result.
Abstract:
A multi-path receiving system is provided. The multi-path receiving system includes a multi-path analyzer, a channel estimator and an equalizer. The multi-path analyzer analyzes a channel impulse response (CIR) of the multi-path channel from the received stream. The channel estimator calculates a channel estimation result from the received stream. The channel estimator comprises a frequency domain interpolation filter performing channel estimation. The frequency domain interpolation filter consumes an amount of power according to the CIR result output from the multi-path analyzer. The equalizer equalizes the received stream based on the channel estimation result.
Abstract:
A multi-path receiving system is provided. The multi-path receiving system includes a multi-path analyzer, a channel estimator and an equalizer. The multi-path analyzer analyzes a channel impulse response (CIR) of the multi-path channel from the received stream. The channel estimator calculates a channel estimation result from the received stream. The channel estimator comprises a frequency domain interpolation filter performing channel estimation. The frequency domain interpolation filter consumes an amount of power according to the CIR result output from the multi-path analyzer. The equalizer equalizes the received stream based on the channel estimation result.
Abstract:
A signal processing apparatus is provided. The signal processing apparatus includes an inner-code decoder, an outer-code decoder, and an error detection unit. The inner-code decoder decodes an input data stream to generate a first output data stream, wherein the input data stream is coded using a concatenated coding scheme including an outer coding and an inner coding. The outer-code decoder decodes the first output data stream to generate a second output data stream. The error detection unit performs an error detection upon the second output data stream to generate an error detection result. The decision logic sets error indication information of the second output data stream according to at least the error detection result.
Abstract:
The invention relates to DVB-T system, and in particular, to a channel estimation method for OFDM symbols. A plurality of symbols are received to generate a pilot response. A finite impulse response is generated from the pilot response. A coefficient table is selected based on the characteristics of the finite impulse response. The channel is estimated by interpolating the pilot response based on the coefficient table.
Abstract:
A speed estimation method is provided, detecting relative speed of a transmitter and a receiver transmitting symbols by OFDM sub-carriers through a channel. First, a first correlation table is established, indicating conceptual relationships between the relative speed and the channel characteristic based on Doppler shift theory. Thereafter, channel characteristic caused by movement is estimated. The first correlation table is checked to determine the relative speed according to the estimated channel characteristic. The channel characteristic is a correlation value generated by auto-correlating received symbols with a delay factor. The first correlation table is established with a first delay factor, associating correlation values to a first plurality of presumed shift frequencies in view of the first delay factor. The first presumed shift frequencies scale from zero to a first maximum value, and the relative speed is proportional to the shift frequencies.
Abstract:
A wireless communication receiver includes a first signal processing block, a second signal processing block, and a de-interleaver. The first signal processing block is configured for receiving a wireless communication signal and processing the wireless communication signal to generate a first output. The de-interleaver is coupled between the first signal processing block and the second signal processing block, and includes a plurality of branches implemented for de-interleaving the first output to generate a second output. The de-interleaver starts outputting the second output to the second signal processing block for further signal processing before all buffers included in the branches are full, and informs the second signal processing block of data derived from one or more unfull buffers included in the branches.
Abstract:
An OFDM receiver is provided. The OFDM receiver comprises a Fourier transform (FFT) module, a storage device, an equalizer, and a diversity combiner module. The Fourier transform module transforms a time-domain symbol into an OFDM symbol. The storage device stores OFDM symbols. When operated in a single chip mode, the storage device stores more OFDM symbols outputted from FFT module than operated in a diversity mode. The equalizer retrieves the OFDM symbols from the storage device or the FFT module, estimates the channel frequency response of a transmission channel, and equalizes the OFDM symbol according to the channel frequency response. When operated in the diversity mode, the diversity combiner module receives the OFDM symbols and an alignment signal from a diversity OFDM receiver.
Abstract:
The invention relates to DVB-T system, and in particular, to a channel estimation method for OFDM symbols. A plurality of symbols are received to generate a pilot response. A finite impulse response is generated from the pilot response. A coefficient table is selected based on the characteristics of the finite impulse response. The channel is estimated by interpolating the pilot response based on the coefficient table.
Abstract:
An impulse noise remover includes: a storage module for storing a plurality of digital values derived from a received signal; a calculating module coupled to the storage module for calculating a first detection value according to a first subset of the plurality of digital values, and for calculating a second detection value according to a second subset of the plurality of digital values; a control unit coupled to the calculating module for identifying a target digital value associated with impulse noise according to the first and the second detection values; and a correcting unit coupled to the storage module and the control unit for replacing the target digital value with a predetermined value.