Abstract:
A rotary micro-adjustment mechanism for a synchronous double-drive positioning platform (such as a gantry) is disposed between a beam and support pillars of the synchronous double-drive positioning platform and comprises a positioning pillar and elastic members. The positioning pillar is provided to pivot the beam relative to the respective support pillars to compensate displacement error of the beam and the support pillars. The elastic members are provided to resist the pivotal rotation between the beam and the support pillar by their restoring force, so as to improve the rigidity of the overall mechanism.
Abstract:
A field emission device (FED) includes a top substrate having a fluorescent layer and an anode electrode, a bottom substrate, at least one cathode electrode having a platform and at least one protrusion, an insulating layer having an opening-pattern or groove-pattern, at least one gate layer located on the insulating layer, and an electron emitter located on the protrusion of the cathode electrode, where the electron emitter can act as side emission of electrons. Each of the platform and the protrusion have a height different from each other, and that the protrusion is located in the opening of the insulating layer. Through the structure illustrated above, uniformity of emitting electron density can be improved and brightness and contrast of color for the FED can be enhanced.
Abstract:
A clamping mechanism automatically adaptable to change of thickness of printed circuit board includes: a frame body having two parallel rail seats; two clamping rail members respectively mounted on the rail seats for clamping a printed circuit board, each clamping rail member including a first clamping rail and a second clamping rail spaced from each other by a clamping gap; and two adjustment units for adjusting the clamping gap of the clamping rail members. Each the adjustment unit includes: a support section mounted on the frame body to provide a support face; a connection section, one end of the connection section being affixed to the first clamping rail, the other end of the connection section being positioned above the support face; and a floating section positioned between the connection section and the support section and supported on the support face to apply a resilient support force to the connection section.
Abstract:
The present invention provides an electron amplification plate placed between a first substrate and a second substrate of a field emission display device. The electron amplification plate comprises at least two insulating layers for electrical insulation; and at least one conductive electrode layer having plural apertures, wherein the conductive electrode layer is sandwiched between the insulating layers. The surface of the inner wall of the apertures is coated with an electron-amplifying material for multiplying the quantity of electrons as the surface is impacted. The inner wall of each aperture comprises an upper concave wall and a lower concave wall, and the lower concave wall is used for collecting electrons, and the upper concave wall is used for focusing electrons. Thereby, the electron beam emitted from the emitters can be effectively amplified, and color purity of the field emission display device is high.
Abstract:
An undeformable transmission mechanism comprises a table, a transmission member, a rotating shaft and a supporting member. The rotating shaft, the transmission member and the supporting member are assembled on the table, and the supporting member is disposed at one end of the rotating shaft. When the transmission member rotates the rotating shaft, the rotating shaft will produce a deviation force, and the supporting member is provided for reducing the deviation force, so as to prolong the life of the rotating shaft and to reduce the cost of maintaining and replacing the rotating shaft.
Abstract:
The present invention provides an electron amplification plate placed between a first substrate and a second substrate of a field emission display device. The electron amplification plate comprises at least two insulating layers for electrical insulation; and at least one conductive electrode layer having plural apertures, wherein the conductive electrode layer is sandwiched between the insulating layers. The surface of the inner wall of the apertures is coated with an electron-amplifying material for multiplying the quantity of electrons as the surface is impacted. The inner wall of each aperture comprises an upper concave wall and a lower concave wall, and the lower concave wall is used for collecting electrons, and the upper concave wall is used for focusing electrons. Thereby, the electron beam emitted from the emitters can be effectively amplified, and color purity of the field emission display device is high.
Abstract:
The bicycle stand includes a first rod, a second rod, and a pivot structure. The first rod has a first end, a second end, and a first pivot portion between the first end and the second end. The second rod has a third end, a fourth end, and a second pivot portion between the third end and the fourth end. The pivot structure is pivotally connected to the first pivot portion and the second pivot portion so that the first rod is pivotally connected with the second rod and is able to pivot between a folding position and an opening position. The first rod and the second rod are X-shaped when the first rod and the second rod are at the opening position.
Abstract:
An alternator includes a stator assembly and a rotor assembly. The rotor assembly includes a rotor core having a first core portion and a second core portion. The rotor core is processed by cementation, so that the first core portion has carbon content that gradually decreases from the outer surface toward the central line of the rotor core till reaching a predetermined carbon content. The second core portion has carbon content lower than that of the first core portion. With these arrangements, the alternator can reduce turn-on speed and increase outputs. A method of manufacturing the non-homogenous rotor core of the alternator is also provided.
Abstract:
A clamping mechanism automatically adaptable to change of thickness of printed circuit board includes: a frame body having two parallel rail seats; two clamping rail members respectively mounted on the rail seats for clamping a printed circuit board, each clamping rail member including a first clamping rail and a second clamping rail spaced from each other by a clamping gap; and two adjustment units for adjusting the clamping gap of the clamping rail members. Each the adjustment unit includes: a support section mounted on the frame body to provide a support face; a connection section, one end of the connection section being affixed to the first clamping rail, the other end of the connection section being positioned above the support face; and a floating section positioned between the connection section and the support section and supported on the support face to apply a resilient support force to the connection section.
Abstract:
An alternator includes a stator assembly and a rotor assembly. The rotor assembly includes a rotor core having a first core portion and a second core portion. The rotor core is processed by cementation, so that the first core portion has carbon content that gradually decreases from the outer surface toward the central line of the rotor core till reaching a predetermined carbon content. The second core portion has carbon content lower than that of the first core portion. With these arrangements, the alternator can reduce turn-on speed and increase outputs. A method of manufacturing the non-homogenous rotor core of the alternator is also provided.