摘要:
A transmission secondary electron emitter is provided which emits secondary electrons generated by the incidence of primary electrons. The transmission secondary electron emitter includes a secondary electron emitting layer which is made of diamond or a material containing diamond as a main component, and of which one surface is the surface of incidence for making the primary electrons incident thereon, and the other surface is the surface of emission for emitting the secondary electrons. Also included is a voltage applying arrangement for applying a predetermined voltage between the surfaces of the incidence and the emission of the secondary electron emitting layer to form an electric field in the secondary electron emitting layer.
摘要:
A thin diamond electron beam amplifier. The illumination side of a thin diamond is illuminated by a seed electron beam creating electron-hole pairs in the diamond. A voltage potential provides an electric field between the illumination side of the diamond and an acceleration grid opposite the emission side of the diamond. Electrons released in the diamond are accelerated through the emission side of the diamond toward the acceleration grid creating an amplified electron beam. Preferred embodiments of the present invention are useful to provide flat panel displays and replacements for thermionic cathodes, cathode ray tubes, fast photodetectors and image intensifiers.
摘要:
A flat display apparatus has a substrate, a plurality of pointed cathodes formed on the substrate, a planar anode facing toward the cathodes via a vacuum space, and a light emitting layer on the side of the anode which is opposite from the cathodes. The anode has a plurality of projections in positions corresponding to the cathodes. The anode projections reduce electron scatter to improve light emission from the light emitting layer. In another embodiment of the flat display apparatus, a plurality of electron sources are disposed on the substrate and positioned relative to one another in an alternately staggered vertical positional sequence toward a light emitting member so that electrons are successively amplified. In a further embodiment of the flat display apparatus, wherein a plurality of electron sources are disposed on the substrate, an electrode faces toward the electron sources, and a light emitting member is provided on a side of the electrode opposite and facing away from the substrate, the electron sources include a primary electron source for generating primary electrons and a secondary electron source for amplifying primary electrons from the primary electron source due to a malta effect.
摘要:
A field emission display device includes three parts: a cathode emitter unit, an electron amplification unit, and a faceplate unit. The primary emission of electrons emitted from the cathode emitter unit bombards an electrode layer that includes an electron amplification material in order to generate secondary emissions of electrons. The secondary emissions of electrons bombard a light-emitting layer of the faceplate unit to generate fluorescence. Then, the fluorescence is transmitted through a transparent faceplate for viewing.
摘要:
An electric field emission display (FED) and a method for manufacturing a spacer thereof are provided. The FED includes a spacer having a structure in which a multi-focusing electrode layer, an electron beam amplifying layer and a getter layer are stacked between an anode and a cathode, or a spacer having a structure in which a first electrode layer, a first insulating layer, a second electrode layer, a second insulating layer, a third electrode layer, a third insulating layer and a fourth electrode layer are sequentially stacked. Thus, electron beams can be easily focused by the multi-focusing electrode of the spacer, and high luminance can be realized at low current due to electron beam amplification of the electron amplifying apparatus. Also, the diamond tip is used as an electron emission means, to thereby obtain a low driving voltage, stability at a high temperature, and high thermal conductivity. Also, a getter formed of a thin film is used, to thereby minimize a getter adhesion space, and an insulating layer formed of ceramic is used, to thereby suppress leakage current of the electrodes. According to the method for manufacturing the FED and a spacer thereof, time for manufacturing the spacer is reduced, and support stiffness is increased by the insulating layers formed of ceramic interposed between the electrode layers, to thereby increase the aspect ratio of the spacer to a desired level. Also, a multitude of electrode layers to which the negative voltage is applied, is provided in the spacer, to thereby suppress absorption of electrons to the surface of the spacer, and the number of electrons colliding against the fluorescent material is increased, to thereby increase the luminance of the device.
摘要:
A field emission device with microchannel gain element provides a plurality of field emission or "cold" cathodes formed generally into an array. The cold cathodes are typically modulated by a grid having a driving voltage. A microchannel gain element is located adjacent the array of cathodes and provides a series of microchannels having a secondary electron emissive material within each of the channels. The channels correspond in number and location to the cathodes and enable multiplication of electrons emitted by the cathodes. Multiplication of the electrons enables the cathodes to be driven at a lower current of emitted electrons than normally applied, absent the microchannel, to obtain the same resulting beam. The beam exiting each of the microchannels is directed to an anode which can comprise a phosphor for use in a flat panel display.
摘要:
In a field emission display, a microchannel plate is mounted between an emitter panel and a display screen. The inner walls of the cylindrical passageways through the microchannel plate are coated with a conductive layer which is connected to a plate voltage. Electrons emitted from the emitter panel travel through cylindrical passageways in the microchannel plate toward the display screen. As electrons pass through the microchannels, the electrons are multiplied and collimated to increase the intensity of the light emitted from the screen and to reduce the pixel size.
摘要:
A field emission device (FED) includes a top substrate having an anode electrode and a phosphor layer, a lower substrate, at least one cathode electrode having an opening-pattern with at least one opening, an insulating layer located on the cathode electrode, a gate layer located on the insulating layer, and an electron emitter located in the opening of the cathode electrode. The electron emitter is adjacent to the cathode electrode and is electrically connected therewith. The cathode electrode having the opening-pattern is located on a bottom panel. Through the structure illustrated above, uniformity of emitting electron density can be improved and brightness and contrast of color for the FED can be enhanced.