Abstract:
A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
Abstract:
The present invention relates to an aqueous coating composition having excellent freeze-thaw stability and a low-VOC content, comprising a multi-stage polymer dispersion comprising (a) an inner phase comprising at least one latex polymer derived from at least one monomer and at least one polymerizable alkoxylated surfactant having the structure: R1—R2 wherein R1 is an allyl group selected from the group consisting of CH3—CH═CH— and CH2═CH—CH2—, or an acrylic group and R2 is a radical comprising at least two carbon atoms and at least one oxyethylene or oxypropylene unit; (b) an outer phase having a glass transition temperature of from 30° C. to 110° C. containing at least one ethylenic unsaturated monomer (c) at least one pigment; (d) water; and (e) less than 3.0% by weight based on the total weight of the aqueous coating composition of anti-freeze agents.
Abstract:
Aqueous formulations comprising as film-forming constituent at least one copolymer P, synthesized from ethylenically unsaturated monomers M, are used for coating shaped mineral articles, the copolymer P having a glass transition temperature in the range from −25 to +80° C. and the monomers M comprising more than 0.2% by weight and up to 5% by weight, based on their overall weight, of itaconic acid as monomer M1.
Abstract:
A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
Abstract:
The invention relates to aqueous pigment preparations containing i) at least one copolymer P of ethylenically unsaturated monomers M in the form of an aqueous polymer dispersion which contains between 0.1 and 1.5 weight %, in relation to the total weight of the copolymer P, of polymerized itaconic acid as acid monomer M1, its salts and/or anhydride, where up to 50 weight % of the itaconic acid can be substituted by another monomer having at least one acid group or a neutralized acid group, and whose glass transition temperature TG lies between −10 and +50° C.; ii) at least one inorganic pigment; iii) possibly inorganic fillers; and iv) standard additives. The invention also relates to the use of the copolymers P containing itaconic acid for improving the wet-abrasion resistance of polymer-bound coatings containing pigments.
Abstract:
An aqueous polymer dispersion having a minimum film-forming temperature of below +65° C. comprising at least one film-forming polymer in the form of dispersed polymer particles comprising a polymer phase P1 and a different polymer phase P2, the polymer dispersion being obtainable by free-radical aqueous emulsion polymerization comprising the following steps: i) polymerization of a first monomer charge M1 to give a polymer P1 having a theoretical glass transition temperature Tg(1) (according to Fox) and ii) polymerization of a second monomer charge M2 to give a polymer P2 having a theoretical glass transition temperature Tg(2) (according to Fox) which is different from Tg(1) in the aqueous dispersion of the polymer P1, at least one chain transfer reagent being used either in the polymerization of the monomer charge M1 or in the polymerization of the monomer charge M2; a process for preparing the aqueous polymer dispersion; and a pigmented and/or filled coating composition comprising as a binder the aqueous polymer dispersion.
Abstract:
The present invention is an aqueous coating composition and method of preparing same that uses certain polyoxyalkylene phosphate surfactants to increase the compatibility of inorganic pigments such as TiO2 with latex polymer binders to reduce the clustering of the inorganic pigment particles in the aqueous coating composition. The aqueous coating composition of the invention includes at least one polyoxyalkylene phosphate surfactant having the following structure: wherein m is 1 or 2, n is an integer from 1 to 100, R1 is C1-C5 alkyl, O—R2 is an alkylphenol residue wherein R2 has the structure C6H4—CpH2p+1 or O—R2 is a linear or branched alkyl alcohol residue wherein R2 has the structure CpH2p+1, and p is an integer from 1 to 30. The aqueous composition further includes at least one latex polymer, at least one inorganic pigment and water.
Abstract:
The present invention relates to the use of compositions comprising at least one aqueous polymer dispersion wherein the polymer has carbonyl or oxirane groups (component a)) and at least one compound with at least two NH2 groups per molecule as sealing or coating compositions, especially for substrates with a hydrophobic surface. The present invention further relates to coating compositions containing such binder formulations.
Abstract:
A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
Abstract:
An aqueous latex coating composition and method of making an aqueous latex coating composition that comprises at least one oligomeric ethylene glycol derivative having the structure RO—(CH2—CH2—O—)n—H, at least one latex polymer, and water, wherein R is H or C1-C4 alkyl and preferably H, and n is from 3 to 9, preferably from 3 to 8, and more preferably from 3 to 6. The oligomeric ethylene glycol derivative functions as both a coalescing solvent and freeze-thaw stabilizer without contributing to the VOC content of the composition.