摘要:
A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups.
摘要:
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.
摘要:
The compound N-(3-ethynylphenyl)maleimide (NEPMI) was used to prepare thermally stable, glassy polyimides which did not exhibit glass transition temperatures below 500.degree. C. NEPMI was blended with the maleimide of methylene dianiline (BMI) and heated to form the polyimide. NEPMI was also mixed with Thermid 600.RTM., a commercially available bisethynyl oligomeric material, and heated to form a thermally stable, glassy polyimide. Lastly, NEPMI was blended with both BMI and Thermid 600.RTM. to form thermally stable, glassy polyimides.
摘要:
The invention is a novel polyimide prepared from 3,4'-oxydianiline (3,4'-ODA) and 4,4'-oxydiphthalic anhydride (ODPA), in 2-methoxyethyl ether (diglyme). The polymer has been prepared in ultra high molecular weight and in a controlled molecular weight form which has a 2.5 percent offset is stoichiometry (excess diamine) with a 5.0 percent level of phthalic anhydride as an endcap. This controlled molecular weight form allows for greatly improved processing of the polymer for moldings, adhesive bonding, and composite fabrication. The higher molecular weight version affords tougher films and coatings. The overall polymer structure groups in the dianhydride, the diamine, and a metal linkage in the diamine affords adequate flow properties for making this polymer useful as a molding powder, adhesive, and matrix resin.
摘要:
A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH.sub.3).sub.2 group in its molecular structure, and the other reactant contains at least one --CH.sub.3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.
摘要:
Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.
摘要:
A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates.
摘要:
The compounds are of the class of aromatic polyamides useful as matrix resins in the manufacture of composites or laminate fabrication. The process for preparing this thermoplastic-thermoset polyamide system involves incorporating a latent crosslinking moiety along the backbone of the polyamide to improve the temperature range of fabrication thereof wherein the resin softens at a relatively low temperature (.congruent.154.degree. C.) and subsequently "sets-up" or undergoes crosslinking when subjected to higher temperature (.congruent.280.degree. C.).
摘要:
The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.
摘要:
A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/ft.sup.3 to about 20 pounds/ft.sup.3 ; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235.degree. C. to about 400.degree. C.; and a thermal stability of 0 to about 1% weight loss at 204.degree. C. as determined by thermogravimetric analysis (TGA).The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.
摘要翻译:机械不透明的芳族聚酰亚胺泡沫由芳族聚酰亚胺前体固体残渣制成,具有以下特性组合:根据ASTM D-3574A的密度为约0.5磅/ ft 3至约20磅/ ft 3; 根据ASTM D-3574C的约1.5psi至约1500psi的压缩强度; 和根据ASTM D-2863的约35%氧气至约75%氧气的极限氧气指数。 芳族聚酰亚胺泡沫没有明显的固体无机污染物,它们是无机发泡剂的残留物。 构成芳族聚酰亚胺泡沫的芳族聚酰亚胺的差示扫描量热法的玻璃化转变温度(Tg)为约235℃至约400℃。 并且通过热重分析(TGA)测定,在204℃下的热稳定性为0至约1%的重量损失。 芳族聚酰亚胺泡沫具有泡沫绝缘和结构泡沫的用途,例如用于航空航天和航海应用。