Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
Abstract:
Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
Abstract:
Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
Abstract:
Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.