摘要:
Methods are provided for labeling cellular glycans bearing azide groups via fluorescent labeling comprising Cu(I)-catalyzed [3+2] cycloaddition of a probe comprising alkynyl group. Generation of fluorescent probes from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by Cu(I)-catalyzed [3+2] cycloaddition of the alkyne group of the probe to an azido-modified sugar are provided. Incorporation of azido-containing fucose analog into glycoconjugates via the fucose salvage pathway are disclosed. Fluorescent visualization of fucosylated cells by flow cytometry of cells treated with 6-azidofucose labeled with click-activated fluorogenic probe or biotinylated alkyne is disclosed. Visualization of intracellular location of fucosylated glycoconjugates by fluorescence microscopy are disclosed.
摘要:
The disclosure provides a method of labeling of cellular glycans bearing azide groups via a fluorescent labeling technique based on Cu(I)-catalyzed [3+2]cycloaddition (click activation) of a probe comprising an alkynyl group. The method entails generating a fluorescent probe from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by Cu(I)-catalyzed [3+2]cycloaddition of the alkyne group of the probe with an azido-modified sugar. The disclosure further provides a method of incorporating an azido-containing fucose analog into glycoconjugates via the fucose salvage pathway. The disclosure provides a method of fluorescent visualization of fucosylated cells by flow cytometry when cells treated with 6-azidofucose are labeled with the click-activated fluorogenic probe or biotinylated alkyne. A method of visualizing the intracellular localization of fucosylated glycoconjugates by fluorescence microscopy is also disclosed.
摘要:
Methods are provided for labeling cellular glycans bearing azide groups via fluorescent labeling comprising Cu(I)-catalyzed [3+2] cycloaddition of a probe comprising alkynyl group. Generation of fluorescent probes from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by Cu(I)-catalyzed [3+2] cycloaddition of the alkyne group of the probe to an azido-modified sugar are provided. Incorporation of azido-containing fucose analog into glycoconjugates via the fucose salvage pathway are disclosed. Fluorescent visualization of fucosylated cells by flow cytometry of cells treated with 6-azidofucose labeled with click-activated fluorogenic probe or biotinylated alkyne is disclosed. Visualization of intracellular location of fucosylated glycoconjugates by fluorescence microscopy are disclosed.
摘要:
The disclosure provides a method of labeling of cellular glycans bearing azide groups via a fluorescent labeling technique based on Cu(I)-catalyzed [3+2]cycloaddition (click activation) of a probe comprising an alkynyl group. The method entails generating a fluorescent probe from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by Cu(I)-catalyzed [3+2]cycloaddition of the alkyne group of the probe with an azido-modified sugar. The disclosure further provides a method of incorporating an azido-containing fucose analog into glycoconjugates via the fucose salvage pathway. The disclosure provides a method of fluorescent visualization of fucosylated cells by flow cytometry when cells treated with 6-azidofucose are labeled with the click-activated fluorogenic probe or biotinylated alkyne. A method of visualizing the intracellular localization of fucosylated glycoconjugates by fluorescence microscopy is also disclosed.
摘要:
Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.
摘要:
Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.
摘要:
The present disclosure relates to a method for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates. The disclosed method incorporates alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars into a cellular glycoconjugate. A chemical probe comprising an azide group and a visual probe or a fluorogenic probe is used to label the alkyne-derivatized sugar-tagged glycoconjugate. In one aspect, the chemical probe binds covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and is visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA or confocal microscopy, and mass spectrometry.
摘要:
An object of the present invention is to provide thiazolidinone derivatives. More specifically, an object of the present invention is to provide novel compounds having a CDC7 inhibitory action.The present invention provides thiazolidinone derivatives represented by the formula (I) The compounds of the present invention inhibit the CDC7 protein kinase activity, and suppress cell proliferation.
摘要:
The present invention relates to novel bicyclic thiazole compounds that inhibit Traf2- and Nck-interacting kinase (TNIK), and as such are useful as TNIK inhibitors administered to cancer patients, especially to solid cancer patients such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, prostate cancer or breast cancer. The bicyclic thiazole compounds are showed by a next formula (I). (wherein R1, R2, R3 and Q are as defined in the specification), or a pharmaceutically acceptable salt thereof.
摘要:
To provide a novel furanone derivative, and a medicine including the same. The furanone derivative is represented by the formula (I): wherein A represents —COOR1 or a hydrogen atom; R1 represents a hydrogen atom, an optionally substituted hydrocarbon group, or an optionally substituted heterocycle; R2 and R3 are the same or different and each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted phenyl group, an optionally substituted heterocycle, an optionally substituted heterocyclic fused ring, or an optionally substituted amino group; or alternatively, R2 and R3, taken together with the nitrogen atom to which they are attached, may form an optionally substituted heterocycle or an optionally substituted heterocyclic fused ring; and R4 represents a hydrogen atom or a halogen atom; with the proviso that when A represents —COOR1, R2 and R3 are not optionally substituted amino groups at the same time, and when A represents a hydrogen atom, R3 represents a hydrogen atom.