摘要:
The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with means of data storing 2 (storage of deformation data measured in the ROI 7 etc.) and means of calculating elastic and visco elastic constants 1 (calculator of shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc.), the means of calculating elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
摘要:
A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
摘要:
The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with means of data storing 2 (storage of deformation data measured in the ROI 7 etc.) and means of calculating elastic and visco elastic constants 1 (calculator of shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc.), the means of calculating elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
摘要:
An accurate real-time measurement of a displacement vector is achieved on the basis of the proper beamforming that require a short time for obtaining one echo data frame without suffering affections by a tissue motion. The displacement measurement method includes the steps of: (a) yielding ultrasound echo data frames by scanning an object laterally or elevationally using an ultrasound beam steered electrically and/or mechanically with a single steering angle over an arbitrary three-dimensional orthogonal coordinate system involving existence of three axes of a depth direction, a lateral direction, and an elevational direction; and (b) calculating a displacement vector distribution by implementing a block matching on the predetermined ultrasound echo data frames yielded at more than two phases.
摘要:
A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
摘要:
A displacement measurement apparatus includes an ultrasound sensor transmitting ultrasounds to an object in accordance with a drive signal, and detecting ultrasound echo signals generated in the object to output echo signals; a driving and processing unit supplying the drive signal to the sensor, and processing the echo signals from the sensor to obtain ultrasound echo data; and a controller controlling the driving and processing unit to yield an ultrasound echo data frame at each of plural different temporal phases based on the ultrasound echo data obtained by scanning the object. The ultrasound echo data has one of local single octant spectra, local single quadrant spectra, and local single half-band-sided spectra in a frequency domain. The ultrasound echo data is obtained from plural same bandwidth spectra. A data processing unit calculates a displacement at each local position or distribution thereof in at least one of axial, lateral, and elevational directions by solving simultaneous equations derived at each local position via implementing a predetermined displacement measurement method on the ultrasound echo data yielded at the plural different temporal phases with respect to at least one of the axial, lateral, and elevational carrier frequencies and the phase, or the one of the local single octant spectra, the local single quadrant spectra, and the local single half-band-sided spectra.
摘要:
Beamforming method that allows a high speed and high accuracy beamforming with no approximate interpolations. This beamforming method includes step (a) that generates reception signals by receiving waves arrival from a measurement object; and step (b) that performs a beamforming with respect to the reception signals generated by step (a); and step (b) including without performing wavenumber matching including approximate interpolation processings with respect to the reception signals, and the reception signals are Fourier's transformed in the axial direction and the calculated Fourier's transform is multiplied to a complex exponential function expressed using a wavenumber of the wave and a carrier frequency to perform wavenumber matching in the lateral direction and further, the product is Fourier's transformed in the lateral direction and the calculated result is multiplied to a complex exponential function, from which an effect of the lateral wavenumber matching is removed, to perform wavenumber matching in the axial direction, by which an image signal is generated.
摘要:
A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
摘要:
A displacement measurement method for achieving, at each position of interest, high accuracy measurement of a displacement, a velocity and a strain in an actually generated beam direction by measuring the beam direction angle from ultrasound echo data. The method includes the steps of: generating an ultrasound echo data frame through scanning an object in a lateral direction with an ultrasound steered beam having one steering angle; calculating both a beam direction and a frequency in the beam direction based on an azimuth angle φ=tan−1(fy/fx), a polar angle θ=cos−1[fz/(fx2+fy2+fz2)1/2], and a frequency (fx2+fy2+fz2)1/2 in the case where first spectral moments calculated from local ultrasound echo data at plural different temporal phases are expressed by a three-dimensional frequency vector (fx, fy, fz); and calculating a displacement component in the beam direction at each position of interest generated between plural different temporal phases.