Abstract:
A liquid crystal display and a method for manufacturing the liquid crystal display is disclosed. The method includes the steps of: (a) applying an adhesive onto at least one of a pair of substrates; (b) dispensing a liquid crystal material to at least one of the pair of substrates; (c) superposing one of the pair of substrates upon the other substrate; and (d) conducting a curing process of the adhesive in an air pressure greater than atmospheric pressure such that one of the substrates is concave toward the other substrate in the finished liquid crystal display.
Abstract:
A flat panel display mainly includes a display panel and a plurality of drive IC chips mounted on the display panel by a chip-on-glass method. The display panel includes a plurality of electrode terminals, a plurality of external terminals and a plurality of first conductive traces. One surface of each drive IC chip is provided with a plurality of output terminals, a plurality of input terminals and a plurality of second conductive traces. The flat panel display is characterized in that corresponding input terminals on adjacent drive IC chips are electrically connected to one another through the first conductive traces of the display panel and the second conductive traces of the drive IC chips.
Abstract:
A flat panel display mainly includes a display panel and a plurality of drive IC chips mounted on the display panel by a chip-on-glass method. The display panel includes a plurality of electrode terminals, a plurality of external terminals and a plurality of first conductive traces. One surface of each drive IC chip is provided with a plurality of output terminals, a plurality of input terminals and a plurality of second conductive traces. The flat panel display is characterized in that corresponding input terminals on adjacent drive IC chips are electrically connected to one another through the first conductive traces of the display panel and the second conductive traces of the drive IC chips.
Abstract:
The present invention provides a method for manufacturing a thin film transistor panel. At first, a gate line is formed on an insulating substrate. A gate insulating layer and a semiconductor layer which comprises an impurity-doped layer are deposited over the gate line sequentially. The semiconductor layer is patterned. A conductive pattern layer with a source electrode, a channel region and a drain electrode is formed over the patterned semiconductor layer. The impurity-doped layer is exposed at the channel region. Then, the impurity-doped layer at the channel region is insulated.