Abstract:
A plasma display panel and method of fabricating the same are disclosed. The method includes: preparing a base substrate to be divided into unit substrates; forming discharge electrodes and a dielectric layer covering the discharge electrodes on the unit substrates; patterning barrier ribs, which include main barrier ribs in a display area and dummy barrier ribs in a non-display area, on the dielectric layer; and dividing the base substrate along borders of the unit substrates. The dummy barrier ribs are close to where the base substrate is divided, such that the dummy barrier ribs of adjacent unit substrates oppose each other. Each unit substrate is separated from another unit substrate along a border at an edge opposite to an edge at which terminals of discharge electrodes and signal transmitting units are connected. This helps prevent noise when a unit substrate is joined with another unit substrate.
Abstract:
A Plasma Display Panel (PDP) includes: a front panel having a front plate and a plurality of electrodes arranged on a surface of the front plate in a predetermined pattern and a back panel having a back plate facing the front plate, a plurality of electrodes arranged on a surface of the back plate in a predetermined pattern to correspond to the plurality of electrodes of the front plate, and at least one ventilation hole. At least two back plates are formed by cutting one base plate on which at least two ventilation holes are formed. Each ventilation hole has a first width in a first edge direction of the back plate and a distance from the first edge to a center of the at least one ventilation hole is at least twice that of the first width.
Abstract:
A plasma display device including: a plasma display panel adapted to create images and including a front substrate, a rear substrate, a plurality of discharge cells defined between the front substrate and the rear substrate, and phosphors coated in the discharge cells; and a filter attached to a front surface of the front substrate and adapted to serve as an image display surface, wherein the filter and the phosphors are respectively colored with first and second colors that are different from each other.
Abstract:
A plasma display panel that includes a front substrate, and a sustain electrode formed on the front substrate. The sustain electrode comprises a transparent electrode and a bus electrode coupled to each other, and the bus electrode comprises conductive particles and adhesive particles. An average diameter of the conductive particles and an average diameter of the adhesive particles are less than 5 μm.
Abstract:
A plasma display panel is provided having a front substrate, a rear substrate facing the front substrate, and barrier ribs arranged on the rear substrate to form discharge cells. The plasma display panel further includes first electrodes and second electrodes on the front substrate facing each other in the discharge cells. In addition, a connection bar connects end portions of the first electrodes. Terminals extend from the connection bar. The barrier ribs are arranged only in a display area for displaying an image. Absent the barrier ribs, a space is located in a non-display area in which the connection bar is located.
Abstract:
A plasma display panel comprises: a plurality of substrate having a front substrate and a back substrate disposed opposite to each other; dielectric walls disposed between a front surface and a back surface, and defining discharge cells in cooperation with the front substrate and the back substrate; a plurality of discharge electrodes separately disposed around the discharge cells and buried into the dielectric walls; dummy electrodes formed at outer portions of the discharge electrodes disposed in one direction of the substrate and etched when over-etching takes place during the time of developing; and red, green and blue color fluorescent layers coated within the discharge cells.
Abstract:
A plasma display panel comprises: a plurality of substrate having a front substrate and a back substrate disposed opposite to each other; dielectric walls disposed between a front surface and a back surface, and defining discharge cells in cooperation with the front substrate and the back substrate; a plurality of discharge electrodes separately disposed around the discharge cells and buried into the dielectric walls; dummy electrodes formed at outer portions of the discharge electrodes disposed in one direction of the substrate and etched when over-etching takes place during the time of developing; and red, green and blue color fluorescent layers coated within the discharge cells.
Abstract:
A plasma display module that can improve the emission efficiency of light, generate a discharge quickly, reduce an address voltage, and be manufactured at lower costs and failure rates, includes a substrate formed of a transparent insulator, a chassis base disposed on a rear side of the substrate, a plurality of barrier ribs formed of a dielectric disposed between the substrate and the chassis base and define discharge cells together with the substrate and the chassis base, a plurality of front discharge electrodes formed in the barrier ribs that surround the discharge cell, a plurality of rear discharge electrodes spaced apart from the front discharge electrodes and formed in the barrier ribs to surround the discharge cell, a fluorescent layer disposed in the discharge cell, a discharge gas filled in the discharge cell, and a plurality of circuit substrates that apply electrical signals to the electrodes by disposing on a rear side of the chassis base.
Abstract:
A plasma display panel includes a front substrate having a first color, a rear substrate facing the front substrate, barrier ribs disposed between the front and rear substrates and defining discharge cells, the barrier ribs having a second color, phosphor layers disposed in the discharge cells, display electrodes arranged on the front substrate and extending in a first direction, the discharge electrodes corresponding to the discharge cells, a dielectric layer disposed on the front substrate and covering the display electrodes, the dielectric layer having a third color, address electrodes arranged on the rear substrate and extending in a second direction crossing the first direction, the address electrodes corresponding to the discharge cells, and a filter disposed on the front substrate and having a fourth color. The first through fourth colors realize a subtractive color mixture through a complementary coloring with each other.
Abstract:
A plasma display module that can improve the emission efficiency of light, generate a discharge quickly, reduce an address voltage, and be manufactured at lower costs and failure rates, includes a substrate formed of a transparent insulator, a chassis base disposed on a rear side of the substrate, a plurality of barrier ribs formed of a dielectric disposed between the substrate and the chassis base and define discharge cells together with the substrate and the chassis base, a plurality of front discharge electrodes formed in the barrier ribs that surround the discharge cell, a plurality of rear discharge electrodes spaced apart from the front discharge electrodes and formed in the barrier ribs to surround the discharge cell, a fluorescent layer disposed in the discharge cell, a discharge gas filled in the discharge cell, and a plurality of circuit substrates that apply electrical signals to the electrodes by disposing on a rear side of the chassis base.