摘要:
The present invention provides a high switching capacity network device in one telco rack including both physical layer switch/router subsystems and an upper layer switch/router subsystem. Instead of providing a single physical layer switch/router subsystem, multiple physical layer switch/router subsystems are provided. Segmenting the physical layer switch/router into multiple, for example, four, subsystems better utilizes routing resources by allowing etches for the physical layer subsystems to be moved away from the center of the mid-plane/back-plane of the network device. Moving the physical layer subsystem etches away from the center of the mid-plane enables the network device to include an upper layer/switch router subsystem with etches toward the center of the mid-plane. Providing a multi-layer network device in one telco rack allows for intelligent layer 1 switching (for example, dynamic network connection set up), allows for one network management system to run both layer 1 and upper layer networks and eliminates grooming fees. Compared with separate layer 1 and upper layer network devices or a multi-layer network device occupying multiple telco racks, a single network device saves valuable telco site space and reduces expenses by sharing overhead such as the chassis, power and cooling.
摘要:
The present invention provides a method and apparatus for supporting multiple redundancy schemes in a single network device. In one network device, various redundancy schemes are supported including 1:1, 1+1, 1:N, no redundancy or a combination of redundancy schemes. In addition, the redundancy scheme or schemes for physical network device cards (i.e., universal port cards) or ports may be different from the redundancy scheme or schemes for forwarding network device cards. For example, a network manager may want to provide 1:1 or 1+1 redundancy for all universal port cards and/or ports but only 1:N redundancy for each N group of forwarding cards. As another example, the network manager may provide certain customers with 1:1 redundancy on both universal port cards (or ports) and forwarding cards to ensure that customer's network availability while providing other customers, with lower availability requirements, with various other redundancy scheme combinations, for example, 1:1, 1+1, 1:N or no redundancy for port cards or ports and 1:N or no redundancy for forwarding cards. The present invention allows customers having different availability/redundancy needs to be serviced by same network device.
摘要:
The present invention reduces the cost of a minimally configured network device by providing a network device with a distributed switch fabric. Such a network device locates a portion of the switch fabric functionality on each forwarding card allowing the minimal network device configuration to include less than the entire switch fabric functionality. The cost of the minimal configuration is, therefore, reduced allowing network service providers to more quickly recover the initial cost of the network device. As new services are requested, additional functionality, including both forwarding cards and universal port cards may be added to the network device to handle the new requests, and the fees for the new services may be applied to the cost of the additional functionality. Consequently, the cost of the network device more closely tracks the service fees received by network providers.
摘要:
The present invention provides an upper layer network device with one or more physical layer data test ports. The data supplied to the test ports reflects the data received by the network device with minimal modification and no upper layer translation or processing, and supplying the data to the test ports does not impact or disrupt the service provided by the network device. Only a small portion of the network device need be operable to send data to the test ports. In addition, the test ports are programmable while the network device is operating and without impacting its operation. Moreover, because the test ports are programmable—that is, they are not dedicated—they may be re-programmed for normal device operation.
摘要:
The present invention provides a method and apparatus for improving transmission of control information within a network device and between multiple connected network devices. Specifically, a control path is included within a network device that is independent of the data path and dedicates control path resources to each distributed processor within the network device. Dedicating resources insures that each processor has sufficient bandwidth on the control plane to transmit control information at high frequencies. This may prevent starvation of data transmissions during periods of high control information transfers and may also reduce the likelihood or further spreading of control information storms when one or more network devices in a network experiences a failure.
摘要:
The present invention provides a network device that fully utilizes the available space in a standard telco rack through the use of multiple mid-planes. Full utilization of available space allows a high switching capacity network device including both physical layer switch/router subsystems and upper layer switch/router subsystems to be fit in one telco rack. Inter-mid-plane connections may be provided by connecting switch fabric cards and/or control processor cards to each of the mid-planes. Providing a multi-layer network device in one telco rack allows for intelligent layer 1 switching (for example, dynamic network connection set up), allows for one network management system to control both layer 1 and upper layer networks and eliminates grooming fees. Compared with separate layer 1 and upper layer network devices or a multi-layer network device occupying multiple telco racks, a single network device saves valuable telco site space and reduces expenses by sharing overhead such as the chassis, power and cooling.
摘要:
A system handles timing information within a packet-switched network. The system classifies packets for processing depending on the packet type. After classification, a new timestamp value may be produced depending on the packet classification. The new timestamp value may use a timestamp value from the received packet, a value from a local clock, and an offset value. The timestamp value may be written into the packet, depending on the packet classification, and checksum-type fields may additionally be updated in the packet. In some embodiments, multiple physical layer circuits are integrated with a local clock circuit.
摘要:
The present invention provides a central switch fabric timing subsystem and distributed switch fabric timing subsystems. Distributed switch fabric subsystems reduce the cost of a minimally configured network device by providing a network device with a distributed switch fabric. Such a network device locates a portion of the switch fabric functionality on each forwarding card allowing the minimal network device configuration to include less than the entire switch fabric functionality. The cost of the minimal configuration is, therefore, reduced allowing network service providers to more quickly recover the initial cost of the network device. As new services are requested, additional functionality, including both forwarding cards and universal port cards may be added to the network device to handle the new requests, and the fees for the new services may be applied to the cost of the additional functionality. Consequently, the cost of the network device more closely tracks the service fees received by network providers.
摘要:
The present invention provides a network device, such as a network switch or a router, having a high degree of modularity and reliability. The network device includes a data plane and a control plane. The data plane relays datagrams between a pair of receive and transmit network interface ports. The control plane runs management and control operations, such as routing and policing algorithms which provide the data plane with instructions on how to relay cell/packets/frames. Further, the control plane includes an internal control device that is primarily responsible for managing the internal resources of the network device, and a separate external control device that is primarily responsible for operations relating to the interfacing of the network device with an external environment.
摘要:
The present invention provides a network device including a central timing subsystem for distributing one or more timing reference signals including a main timing signal and an embedded timing signal. Embedding one timing signal within another reduces the routing resources necessary to route the timing signal(s) within the network device. In addition, one central timing system, as opposed to two or more, may be used to provide multiple different synchronous clock signals. In one embodiment, the main timing signal is used for network data transfer while the embedded signal is used at least for processor synchronization. Consequently, a separate central timing subsystem is not required for generation and distribution of processor timing reference signals, and separate routing resources are not required for the processor timing reference signals. In addition, separate local timing subsystems for both the central timing and processor timing are not necessary. Embedding the processor timing reference signal within a highly accurate, redundant external timing reference signal also provides a highly accurate and redundant processor timing reference signal, and having a common local timing subsystem is more efficient resulting in less design time, less debug time, less risk, design re-use and simulation re-use.