摘要:
A fiber brush seal attached with metallic structure, suitable for use with SiC-SiC ceramic matrix composite (CMC) components. The fibers may be selected from oxides, carbides and nitrides of silicon, tungsten, chromium, iron, titanium, boron, zirconium and aluminum, and may optionally be coated with a boron nitride based coating.
摘要:
12A high temperature gas turbine component includes an inner core made of a monolithic ceramic material embedded within an outer CMC shell. The inner core may be formed with a through hole, blind hole, wear pads and the like. A method of making the bushing includes the steps of a) forming an inner core of silicon nitride or silicon carbide; and b) applying a ceramic matrix composite material over substantially all of the inner core.
摘要:
A method for securing a nozzle for a turbine is provided. The nozzle includes an airfoil having a suction side and a pressure side connected at a leading edge and a trailing edge such that a cooling cavity is defined within the airfoil, the airfoil extending between an inner band and an outer band. The method includes extending at least one member through the airfoil, and at least one of the inner band and the outer band. The method further includes securing the nozzle assembly in position with at least one fastener such that the at least one member is coupled adjacent to at least one of the inner band and the outer band.
摘要:
A shroud support method and apparatus for a ceramic component of a gas turbine having: an outer shroud block having a coupling to a casing of the gas turbine; a spring mass damper attached to the outer shroud block and including a spring biased piston extending through said outer shroud block, wherein the spring mass damper applies a load to the ceramic component; and the ceramic component has a forward flange and an aft flange each attachable to the outer shroud block.
摘要:
A shroud support apparatus for a ceramic component of a gas turbine having: an outer shroud block having a coupling to a casing of the gas turbine; a spring mass damper attached to the outer shroud block and including a spring biased piston extending through said outer shroud block, wherein the spring mass damper applies a load to the ceramic component; and the ceramic component has a forward flange and an aft flange each attachable to the outer shroud block.
摘要:
A shroud support method and apparatus for a ceramic component of a gas turbine having: an outer shroud block having a coupling to a casing of the gas turbine; a spring mass damper attached to the outer shroud block and including a spring biased piston extending through said outer shroud block, wherein the spring mass damper applies a load to the ceramic component; and the ceramic component has a forward flange and an aft flange each attachable to the outer shroud block.
摘要:
The damper system includes a ceramic composite shroud in part defining the hot gas path of a turbine and a spring-biased piston and damper block which bears against the backside surface of the shroud to tune the vibratory response of the shroud relative to pressure pulses of the hot gas path in a manner to avoid near or resonant frequency response. The damper block has projections specifically located to bear against the shroud to dampen the frequency response of the shroud and provide a thermal insulating layer between the shroud and the damper block.
摘要:
A system comprises, a first heat recovery steam generator (HRSG) having an upstream intake duct portion, a first gas turbine engine connected to a first exhaust duct operative to output exhaust from the first gas turbine engine to the upstream intake duct portion of the first HRSG, and a second gas turbine engine connected to a second exhaust duct operative to output exhaust from the second gas turbine engine to the upstream intake duct portion of the first HRSG.
摘要:
A combustor has a flow sleeve and a flow liner defining a generally axial flow direction of compressor discharge air toward combustor burners. A casing is secured to the forward end of the flow sleeve defining an annular plenum along the interior of the flow sleeve. Openings through the flow sleeve supply compressor discharge air into the plenum where the air changes direction for flow through apertures into and generally coaxially with the free air stream. The axial injection minimizes or eliminates energy losses due to cross flow injection within the axial air stream while continuing to cool the liner.