摘要:
A method for controlled-amplitude prestack time migration of seismic data traces. According to the inventive method, common-offset gathers of the prestack seismic data traces are 3-D Fourier transformed from the space-time domain to a preselected alternate data domain, such as the frequency-wavenumber domain, the wavenumber-time domain, or the slant-stack domain. A migration operator that substantially preserves the seismic amplitudes of the original data traces is computed in the {right arrow over (p)}−z domain. This migration operator is applied to the transformed data traces in the alternate data domain, an imaging condition is applied, and the resulting migrated data traces are then transformed back to the space domain.
摘要:
Method for efficient computation of wave equation migration angle gathers by using multiple imaging conditions. Common reflection angle or common azimuth gathers or gathers including both common reflection angles and common azimuth angles are produced as the data are migrated. In the course of either wave equation migration or reverse time migration, the pressures and particle motion velocities that need to be computed are sufficient to also compute the Poynting vector pointing in the direction of source-side (35) or receiver-side (37) wavefield propagation. From that, the reflection and azimuth angles can be computed (38). The seismic images can then be stored in the appropriate angle bins, from which common reflection angle or azimuth data volumes can be assembled (39).
摘要:
Method and apparatus for generating resonant broad band pressure waves in a fluid-filled wellbore for seismic exploration. In the preferred embodiment, a device is provided in a borehole; the device comprises a cylindrical choke body and a means at each end of the choke body for partially or completely blocking off the borehole and creating a fluid-filled borehole cavity. The fluid inside the cavity is oscillated to establish a standing pressure wave of a desired bandwidth in the fluid. The standing wave is radiated through the wellbore into the earth formation and is received by seismic detectors. The fluid is oscillated over a range of frequencies to generate more information about the earth formation.
摘要:
The quadrupole shear wave logging device of this invention includes a logging sonde, means for generating a quadrupole shear wave in the earth formation surrounding a borehole containing fluid, and means for detecting in the fluid the refraction of the quadrupole shear wave. In the preferred embodiment, the generating means comprises four similar sectors of a hollow piezoelectric cylinder. The four cylinders are polarized radially. The four sectors are so connected to the sonde that they are in the form of a split cylinder coaxial with the sonde axis. Electrical pulses of similar waveforms are applied across the inner and outer cylindrical surfaces of each sector to vibrate the four sectors. The electrical pulses are of such polarities that, during their initial motions of vibration, two oppositely situated sectors are caused to move outward and the remaining two oppositely situated sectors to move inward substantially simultaneously. Thus, the oppositely situated sectors will vibrate in phase whereas adjacent sectors will vibrate substantially opposite in phase. The vibrations of the four sectors generate four pressure waves: two positive pressure waves and two negative pressure waves. The four pressure waves generated will interfere and produce a quadrupole shear wave in the formation. The pressure wave in the fluid caused by refraction of such quadrupole shear wave is detected by the detecting means comprising two detectors in the fluid spaced apart longitudinally from each other and from the generating means. Shear velocity of the formation may be determined from the time interval between the detections of the refraction of the quadrupole shear wave by the two detectors.
摘要:
The preferred embodiment of this invention includes a logging sonde, an elongated pair of oppositely polarized piezoelectric plates connected to each other by their flat surfaces, and an electrical pulse applying means for applying electrical pulses across the pair of plates so as to bend and vibrate the plates in a direction perpendicular to the length of the plates. Vibration of the plates in a fluid contained in a well creates in the fluid a positive compressional wave in one direction and simultaneously a negative compressional wave in the opposite direction. The two compressional waves will interfere to produce a dipole shear wave in the earth surrounding the well. The dipole shear wave arrival is detected at two locations in the fluid spaced longitudinally along the well from each other and from the plate. The ratio of the time interval between the detections of the dipole shear wave arrival at the two locations to the distance between the two locations yields the shear wave velocity of the earth around the well. The length of the plates may be selected to generate dipole shear waves with frequencies in a preferred range so as to improve shear wave signal to compressional wave noise ratio.
摘要:
A model seismic image of a subsurface seismic reflector is constructed, wherein a set of source and receiver pairs is located, and a subsurface velocity function is determined. Specular reflection points are determined on the subsurface seismic reflector for each of the source and receiver pairs. A Fresnel zone is determined on the subsurface seismic reflector for each of the specular reflection points, using the subsurface velocity function. One or more seismic wavelets are selected and a set of image points is defined containing the subsurface seismic reflector. A synthetic seismic amplitude is determined for each of the image points by summing the Fresnel zone synthetic seismic amplitude for all of the Fresnel zones that contain the image point, using the seismic wavelets. The model seismic image of the subsurface seismic reflector is constructed, using the synthetic seismic amplitudes at the image points.
摘要:
The current invention is an improved method for preventing annular fluid flow following primary cementing of a casing string in a wellbore. The method involves injecting high pressure pulses of a working fluid into a liquid-filled casing string to produce tube waves that will propagate through the casing liquid until they encounter a casing restriction or barrier. This encounter vibrates the casing string. Vibration of the casing string helps to maintain the pressure of the cement slurry at or above the pressure of fluids in the surrounding formations, thereby preventing or reducing annular fluid flow.
摘要:
A seismic source for downhole use is disclosed which is formed by an outer tubular member having weighted ends which carries within a coaxially mounted tubularly shaped piezoelectric element. The piezoelectric element is cyclically driven to produce a standing wave having a frequency in the range of 0.25 to 5 kHz and a narrow bandwidth in the range of 5-50 Hz.
摘要:
Method and apparatus for converting tube waves into body waves downhole for seismic exploration are disclosed, comprising a rotary valve tube wave source for producing swept frequency tube waves that are injected into a tubing or wellbore. The tube waves are converted to body waves by an elongate tube wave converter located at a selected position downhole. The tube wave converter comprises an elongate body that preferably substantially fills the wellbore or tubing and has a preferred shape in order to convert efficiently the tube waves to body waves at the selected position downhole.
摘要:
The shear wave velocity of the formation is determined by logging the fastest component of the guided wave generated by the generating means. This method is advantageous for logging the shear wave velocities of soft formations. If the generating means of a multipole acoustic logging device radiates at frequencies including a critical frequency, the fastest component of the guided wave generated by the generating means will have substantially the same velocity as a shear wave traveling in the earth formation. By logging the velocity of this fastest component, the shear wave velocity of the earth formation is determined.