摘要:
There is provided a computer-implemented method for user query reformulation. A graph is created to represent a relationship between previous user query terms. The graph may represent the previous user searches in n-grams that correspond to nodes. A random walk analysis is performed to determine probabilities that various n-grams corresponding to nodes of the graph could be used to effectively alter a user search term. The probabilities represent a quantification of relationships between nodes of the graph. A determination may be made regarding whether to reformulate the user query based on a relationship between a user search term in the user query and a graphed search term represented by a node of the graph. The determination takes into account a relationship between the user search term and the graphed search term.
摘要:
There is provided a computer-implemented method for user query reformulation. A graph is created to represent a relationship between previous user query terms. The graph may represent the previous user searches in n-grams that correspond to nodes. A random walk analysis is performed to determine probabilities that various n-grams corresponding to nodes of the graph could be used to effectively alter a user search term. The probabilities represent a quantification of relationships between nodes of the graph. A determination may be made regarding whether to reformulate the user query based on a relationship between a user search term in the user query and a graphed search term represented by a node of the graph. The determination takes into account a relationship between the user search term and the graphed search term.
摘要:
The subject disclosure is directed towards developing a translation model for mapping search query terms to document-related data. By processing user logs comprising search histories into word-aligned query-document pairs, the translation model may be trained using data, such as probabilities, corresponding to the word-aligned query-document pairs. After incorporating the translation model into model data for a search engine, the translation model is used may used as features for producing relevance scores for current search queries and ranking documents/advertisements according to relevance.
摘要:
The subject disclosure is directed towards developing a translation model for mapping search query terms to document-related data. By processing user logs comprising search histories into word-aligned query-document pairs, the translation model may be trained using data, such as probabilities, corresponding to the word-aligned query-document pairs. After incorporating the translation model into model data for a search engine, the translation model is used may used as features for producing relevance scores for current search queries and ranking documents/advertisements according to relevance.
摘要:
A “Cross-Lingual Unified Relevance Model” provides a feedback model that improves a machine-learned ranker for a language with few training resources, using feedback from a more complete ranker for a language that has more training resources. The model focuses on linguistically non-local queries, such as “world cup” (English language/U.S. market) and “copa mundial” (Spanish language/Mexican market), that have similar user intent in different languages and markets or regions, thus allowing the low-resource ranker to receive direct relevance feedback from the high-resource ranker. Among other things, the Cross-Lingual Unified Relevance Model differs from conventional relevancy-based techniques by incorporating both query- and document-level features. More specifically, the Cross-Lingual Unified Relevance Model generalizes existing cross-lingual feedback models, incorporating both query expansion and document re-ranking to further amplify the signal from the high-resource ranker to enable a learning to rank approach based on appropriately labeled training data.
摘要:
Systems, methods, and computer media for identifying query rewriting replacement terms are provided. A list of related string pairs each comprising a first string and second string is received. The first string of each related string pair is a user search query extracted from user click log data. For one or more of the related string pairs, the string pair is provided as inputs to a statistical machine translation model. The model identifies one or more pairs of corresponding terms, each pair of corresponding terms including a first term from the first string and a second term from the second string. The model also calculates a probability of relatedness for each of the one or more pairs of corresponding terms. Term pairs whose calculated probability of relatedness exceeds a threshold are characterized as query term replacements and incorporated, along with the probability of relatedness, into a query rewriting candidate database.
摘要:
An alteration candidate for a query can be scored. The scoring may include computing one or more query-dependent feature scores and/or one or more intra-candidate dependent feature scores. The computation of the query-dependent feature score(s) can be based on dependencies to multiple query terms from each of one or more alteration terms (i.e., for each of the one or more alteration terms, there can be dependencies to multiple query terms that form at least a portion of the basis for the query-dependent feature score(s)). The computation of the intra-candidate dependent feature score(s) can be based on dependencies between different terms in the alteration candidate. A candidate score can be computed using the query dependent feature score(s) and/or the intra-candidate dependent feature score(s). Additionally, the candidate score can be used in determining whether to select the candidate to expand the query. If selected, the candidate can be used to expand the query.
摘要:
A computing system configured to produce an optimized translation hypothesis of text input into the computing system. The computing system includes a plurality of translation machines. Each of the translation machines is configured to produce their own translation hypothesis from the same text. An optimization machine is connected to the plurality of translation machines. The optimization machine is configured to receive the translation hypotheses from the translation machines. The optimization machine is further configured to align, word-to-word, the hypotheses in the plurality of hypotheses by using a hidden Markov model.
摘要:
A method, computer readable medium and system are provided which retrieve confirming sentences from a sentence database in response to a query. A search engine retrieves confirming sentences from the sentence database in response to the query. IN retrieving the confirming sentences, the search engine defines indexing units based upon the query, with the indexing units including both lemma from the query and extended indexing units associated with the query. The search engine then retrieves a plurality of sentences from the sentence database using the defined indexing units as search parameters. A similarity between each of the plurality of retrieved sentences and the query is determined by the search engine, wherein each similarity is determined as a function of a linguistic weight of a term in the query. The search engine then ranks the plurality of retrieved sentences based upon the determined similarities.
摘要:
Model adaptation may be performed to take a general model trained with a set of training data (possibly large), and adapt the model using a set of domain-specific training data (possibly small). The parameters, structure, or configuration of a model trained in one domain (called the background domain) may be adapted to a different domain (called the adaptation domain), for which there may be a limited amount of training data. The adaption may be performed using the Boosting Algorithm to select an optimal basis function that optimizes a measure of error of the model as it is being iteratively refined, i.e., adapted.