Abstract:
An optical device is configured to perform both switching and attenuation of an optical beam in response to a single control signal. The optical device includes a liquid-crystal-based beam-polarizing element having polarization-conditioning regions that are controlled using a common electrode. The first polarization-conditioning region conditions the polarization of the input beam in order to separate the input beam into a primary component and a residual component. The second and third polarization-conditioning regions change the polarization of the primary component and the residual component, respectively. The primary component is directed to an output port after it has been attenuated based on its polarization state. The residual component, after passing through the third polarization-conditioning region, has its intensity further reduced based on its polarization state.
Abstract:
The specification describes tunable optical filters improved according to the invention by designing the optical system architecture to provide a double pass of the signal being analyzed through the tunable optical filter. The benefit of double passes through the tunable optical filter is narrower linewidth and better adjacent and non-adjacent channel isolation. The invention may be implemented with any tunable optical filter which is reciprocal. The optical system architecture is preferably an optical performance monitor for a WDM system.
Abstract:
One embodiment sets forth a technique for measuring chromatic dispersion using reference signals within the operational range of amplifiers used to refresh data signals. One red/blue laser pair in the transmission node is used for measuring dispersion and chromatic dispersion compensation is added at each line node in the system. Since reference and data signals propagate through each amplifier, the reference signals used to measure chromatic dispersion receive the same dispersion compensation (and will have the same residual dispersion) as the data signals. Therefore, any residual dispersion in the data signals will manifest itself in downstream dispersion measurements and, thus, can be corrected. The tunable dispersion compensator in each line node may be set to compensate for the measured dispersion, thereby compensating for both the chromatic dispersion of the link connecting the current node to the prior node and any uncorrected residual dispersion from prior nodes.
Abstract:
An optical device is configured to perform both switching and attenuation of an optical beam in response to a single control signal. The optical device includes a liquid-crystal-based beam-polarizing element having polarization-conditioning regions that are controlled using a common electrode. The first polarization-conditioning region conditions the polarization of the input beam in order to separate the input beam into a primary component and a residual component. The second and third polarization-conditioning regions change the polarization of the primary component and the residual component, respectively. The primary component is directed to an output port after it has been attenuated based on its polarization state. The residual component, after passing through the third polarization-conditioning region, has its intensity further reduced based on its polarization state.
Abstract:
A tunable chromatic dispersion and dispersion slope compensator that utilizes a Virtually Imaged Phased Array (VIPA), a rotating transmissive diffraction grating, and a mirror with different curvatures for different cross-sections is disclosed. The compensator in accordance with the present invention provides simultaneous tunable compensation of chromatic dispersion and dispersion slope utilizing a single apparatus. The amount of compensation is accomplished by rotating the transmissive diffracting grating and/or translating the mirror. A system which utilizes the compensator is thus cost effective to manufacture.
Abstract:
An optical performance monitoring system includes a four-port tap coupling a tunable optical filter to a light detector. The four-port tap is configured as an optical tap and an optical splitter combined into a single optical element, where the optical tap directs a portion of an optical signal from an optical fiber to the tunable optical filter, and the optical splitter directs the optical signal from the tunable optical filter to the light detector. The optical performance monitoring system may employ tunable optical filters as a double-duty tunable filter or a double-pass tunable filter. As a double-duty tunable filter, optical signals to be monitored are passed through the tunable filter in opposite directions. As a double-pass tunable filter, a reflecting element is arranged on the output side of the tunable filter so that a filtered optical signal can be fed back into the tunable filter.
Abstract:
An optical device for a wavelength division multiplexing system has a telecentric lens system and a signal-processing optical element, where the signal-processing optical element performs switching, attenuation, or other optical signal processing for the optical device. The telecentric lens system acts as a self-compensating optical system to minimize sensitivity of the optical device to unwanted displacement of an input image from the optical axis of the optical device. The optical device may include multiple telecentric lens systems, in which case the optical device is also less sensitive to precise alignment between the telecentric lens systems.
Abstract:
An optical switch for performing high extinction ratio switching of an optical signal includes a beam polarizing element and one or more optical elements. The optical elements are configured to direct an optical signal along a first or second optical path based on the polarization state of the optical signal as it passes through the optical elements. The optical switch performs high extinction ratio switching of the optical signal by preventing unwanted optical energy from entering an output port by using an absorptive or reflective optical element or by directing the unwanted optical energy along a different optical path.
Abstract:
A fiber lens assembly is configured to optically couple an optical fiber to a signal processing device having free-space optical elements. The fiber lens assembly includes a diverging lens having a focal length that may be around 2 to 6 times the diameter of the optical fiber core. Sensitivity of the fiber lens assembly to angular misalignment and positional displacement is reduced by coupling the optical fiber to the signal processing device using a diverging lens rather than a collimating lens, and by configuring the diverging lens with a suitable focal length.
Abstract:
The present invention provides an improved gain slope equalizer which provides variable optical attenuation. The gain slope equalizer includes a transmission diffraction grating with a first side and a second side; a first lens optically coupled to the second side of the transmission diffraction grating; and at least one reflective surface optically coupled to the first lens at a side opposite to the transmission diffraction grating. The gain slope equalizer in accordance with the present invention can also be used with a Virtually Imaged Phased Array (VIPA) to provide a chromatic dispersion slope and chromatic dispersion compensation as well as variable optical attenuation. The present invention provides the heretofore unavailable capability of simultaneous tunable gain slope equalization and chromatic dispersion compensation utilizing a single apparatus.