摘要:
A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
摘要:
A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
摘要:
To determine the uniformity of an optical component, a light beam is directed to impinge on a surface of an optical component at each of multiple points. A characteristic of the light beam impinging on the optical component surface at each of the multiple points is modified so as to have multiple different values. Light from the impinging light beam that passes through the optical component at each of the multiple points, with the light beam characteristic at each of the multiple different values, is detected. The non-uniformity of the optical component is determined based on the detected passing light.
摘要:
Process and apparatus for automated production of optical devices comprising two plane parallel optical surfaces of a desired optical performance for transmitted light, by measuring and quantifying the spectral response of intensity versus wavelength across the working surface area of a starter optical device as compared to an acceptable computer model, as a three dimensional contour map of optical thickness based on the assumption of a constant index of refraction, then reducing the high spots by automated means such as polishing, and measuring the spectral response again.