摘要:
Methods and systems for performing signal pre-correction of a transmission signal comprising a sequence of symbols using a Pattern Dependent Look-up Table (PDLUT) containing one or more distortion correction values. Upon accessing a distortion correction value from the PDLUT for a symbol of the sequence of symbols, the accessed distortion correction value is quantized into one or more quantized values according to one or more quantizations, thereby reducing the bit-width of the distortion correction value. The transmission signal and the distortion correction value with reduced bit-width may undergo linear correction compensation, such as through a finite impulse response (FIR) filter, independent of one another, where the one or more quantized correction values with reduced bit-width reduce a number of calculation steps performed during linear correction compensation resulting in power savings. The linearly compensated quantized values and the linearly compensated signal are combined to form a pre-corrected signal.
摘要:
Methods and devices are described for frequency domain equalization with low complexity and loop delay. A transmitter inserts pilot symbols into a data signal at intervals of every n data bits. These pilot symbols are used by a receiver-side frequency-domain equalizer to calculate error levels and equalize the received data signal to effect impairment compensation such as SOP tracking. QPSK or BPSK symbols may be used for the pilot symbols, simplifying error calculation into an addition operation instead of the conventional multiplication operation required by conventional FDEQs. Equalizers are described that may operate in a pilot-assisted mode, a conventional decision-directed mode, or both.
摘要:
Aspects of the present application provide methods and devices for compensating crosstalk in in the digital domain, the crosstalk occurring in the analog domain, for an optical coherent transceiver on a photonic integrated circuit (PIC).
摘要:
An apparatus in a signal receiver, such as an optical signal receiver, is provided. An adaptive equalizer provides an equalized output indicative of a received signal. A feedback component receives the equalized output and provides feedback to the adaptive equalizer. A carrier recovery component receives the equalized output from the adaptive equalizer provides estimates of symbols. The carrier recovery component is partially or fully disjoint from the feedback component, thus removing the carrier recovery component from equalizer the feedback loop. The feedback component can include an initial carrier recovery component and a phase rotation and detection component. The initial carrier recovery component generates a carrier recovery output based on the equalized output. The phase rotation and detection component performs a phase rotation based on the carrier recovery output.
摘要:
The disclosure is directed to a method and system for generating a pilot tone for an optical signal with an optical telecommunications system. The pilot tone is generated in the digital domain by modulating the data to be transmitted to a destination node within the optical telecommunications network. The modulation of the data introduces occurrence modulation to the optical signal.
摘要:
An apparatus for performing fractionally spaced adaptive equalization with non-integer sub-symbol sampling has an adaptive equalizer that receives a continuous stream of input data having a non-integer, fractional delay between consecutive samples at a non-integer, sub-symbol rate and outputs a stream of equalized data based on tap weights of taps of the adaptive equalizer that are spaced at an interval corresponding to the non-integer, sub-symbol rate. The tap weights are updated independently of the fractional delay between consecutive samples of the input data using an error signal. An equalizer output alignment component downstream of the adaptive equalizer aligns the stream of equalized data with a corresponding transmitted symbol.
摘要:
Provided is an apparatus and method for transmitting and receiving wireless signals. A transmitting apparatus has a signal processor and a transmitter. The signal processor is configured to generate a signal having a middle channel and at least one side channel. The transmitter is configured to wirelessly transmit the signal subject to a spectral mask that has shoulder regions. According to an embodiment of the invention, the signal processor generates the signal such that each side channel is positioned in one of the shoulder regions of the spectral mask. In this manner, bandwidth from the shoulder regions can be utilized by one or more side channels. Also provided is a receiving apparatus having a receiver configured to wirelessly receive the signal, and a signal processor configured to process the signal.
摘要:
Described are an optical communications system and a method that allow for compensation of chromatic dispersion and polarization mode dispersion imparted to a communications signal propagating through an optical link. The system is based on a cost-effective optical transport architecture that accommodates baud rates exceeding 15 Gbaud and eliminates the need for costly optical dispersion compensators. Compensation for polarization mode dispersion is performed at the receiver using nonlinear processing. Advantageously, direct detection modulation using inexpensive electro-optic system components can be used in place of more costly and complex coherent and differential modulation formats. Digital filtering can be performed at the transmitter and the input signal can be inverted based on the nonlinearity of the transmitter electro-optic components. Consequently, the bandwidth and linearity requirements for the transmitter electro-optic components are relaxed, and cost reductions are realized.
摘要:
In general, according to an embodiment, a wireless transmitter includes a plurality of coding and modulation modules to apply corresponding coding and modulation algorithms to input information blocks. A discrete Fourier transform (DFT) precoder applies DFT processing to outputs of the coding and modulation modules, and an inverse fast Fourier transform (IFFT) module receives a DFT output of the DFT precoder, which is mapped to different subcarriers according to the resource allocation indicated by the base station, and applies IFFT processing to the DFT output. An output processing stage produces output signals based on the output of the IFFT module to transmit wirelessly to a wireless receiver. In a different implementation, the outputs of the coding and modulation modules can be provided to an IFFT module to produce IFFT-processed output information.
摘要:
An optical receiver comprising a frame detector configured to receive a polarized signal comprising a first bit stream and a second bit stream, and further configured to identify a plurality of frames in the first bit stream and the second bit stream using a composite header, and a time-domain equalizer (TDEQ) configured to separate the first bit stream and the second bit stream using a portion of the composite header.