Abstract:
A compact lens system includes a first positive lens element (1) on the object side and a second negative lens element (2) on the image side. The first positive lens element is a meniscus lens having a convex surface (11) facing the object side. The second negative lens element is also a meniscus lens having a convex surface (12) facing the image side. Both of the first and second lens elements are aspheric lenses each having at least one aspheric surface. The first and second lens elements are made of different plastic materials and are symmetrically arranged with respect to each other along the optical axis.
Abstract:
A compact lens system includes a first positive lens element (1) on the object side and a second negative lens element (2) on the image side. The first positive lens element is a meniscus lens having a convex surface (11) facing the object side. The second negative lens element is also a meniscus lens having a convex surface (12) facing the image side. Both of the first and second lens elements are aspheric lenses each having at least one aspheric surface. The first and second lens elements are made of different plastic materials and are symmetrically arranged with respect to each other along the optical axis.
Abstract:
A projector being operated at a working surface is provided. The projector includes a casing, a light source module and a transparent blocking member. The casing has a first surface and a second surface. The first surface is adjacent to the working surface and opposite to the second surface. The second surface has an opening. The light source module corresponding to the opening is disposed in the casing. The light source module can be assembled and disassembled through the opening. The transparent blocking member is disposed on the second surface and covers the opening.
Abstract:
The present invention provides a micro-projection lens including first lens group, a second lens group, and a third lens group arranged in sequence along an optical axis from a screen side to a light modulator side. The first lens group has positive refractive power and includes at least an aspheric lens. The second lens group has negative refractive power and includes at least a glass tablet. The third lens group has positive refractive power and includes at least an aspheric lens. Therefore, the micro-projection lens of the present invention has a small size and high optical performance.
Abstract:
A capacitor device selectively combines MOM, MIM and varactor regions in the same layout area of an IC. Two or more types of capacitor regions arranged vertically on a substrate to form the capacitor device. This increase the capacitance per unit of the capacitor device, without occupying an extra layout area.
Abstract:
A miniature image pickup lens includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in sequence along an optical axis from an object side to an image side. The first lens is a meniscus lens with negative refractive power and has a convex side facing the object side. The first lens has at least an aspheric side. The second lens is a biconvex lens with positive refractive power. The third lens is a biconcave lens with negative refractive power. The fourth lens is a biconvex lens with positive refractive power and has at least an aspheric side. The fifth lens has a negative refractive power.
Abstract:
A method for forming a metal-insulator-metal capacitor in a multilevel semiconductor device utilizes the copper interconnect levels of the semiconductor device as parts of the capacitor. A lower capacitor plate consists of a copper interconnect level and a first metal layer formed on the copper interconnect level by selective deposition methods. The upper capacitor plate includes the same pattern as the capacitor dielectric, the pattern having an area less than the area of the lower capacitor plate. The upper capacitor plate is formed of a second metal layer. The first and second metal layers may each be formed of cobalt, tungsten, nickel, molybdenum, or a combinations of one of the aforementioned elements with boron and/or phosphorus. Conductive vias provide contact from the upper capacitor plate and lower capacitor plate, to interconnect levels.
Abstract:
A metal-insulator-metal capacitor formed in a multilevel semiconductor device utilizes the copper interconnect levels of the semiconductor device as parts of the capacitor. A lower capacitor plate consists of a copper interconnect level and a first metal layer formed on the copper interconnect level by selective deposition methods. The upper capacitor plate includes the same pattern as the capacitor dielectric, the pattern having an area less than the area of the lower capacitor plate. The upper capacitor plate is formed of a second metal layer. The first and second metal layers may each be formed of cobalt, tungsten, nickel, molybdenum, or a combinations of one of the aforementioned elements with boron and/or phosphorus. Conductive vias provide contact from the upper capacitor plate and lower capacitor plate, to interconnect levels.
Abstract:
A method for forming a metal-insulator-metal capacitor in a multilevel semiconductor device utilizes the copper interconnect levels of the semiconductor device as parts of the capacitor. A lower capacitor plate consists of a copper interconnect level and a first metal layer formed on the copper interconnect level by selective deposition methods. The upper capacitor plate includes the same pattern as the capacitor dielectric, the pattern having an area less than the area of the lower capacitor plate. The upper capacitor plate is formed of a second metal layer. The first and second metal layers may each be formed of cobalt, tungsten, nickel, molybdenum, or a combinations of one of the aforementioned elements with boron and/or phosphorus. Conductive vias provide contact from the upper capacitor plate and lower capacitor plate, to interconnect levels.
Abstract:
A scanner lens includes a first lens, a second lens, and a third lens. The first lens is provided with a first focal length. The first, second, and third lenses are sequentially arranged from an object end to an imaging end and are respectively provided with a plus diopter, a minus diopter, and a plus diopter. At least one of the first, second, and third lenses comprises an aspheric lens. The ratio of the first focal length to a system focal length of the scanner lens ranges between 1 and 2.