Abstract:
A light source device includes a light source, a homogenizer optical system provided with a first multi-lens array having a plurality of first lenses which light emitted from the light source enters, and a second multi-lens array having a plurality of second lenses each of which the light having been transmitted through corresponding one of the first lenses enters, and adapted to homogenize the light emitted from the light source, a light intensity control element adapted to control light intensity of the light emitted from the homogenizer optical system, a light collection optical system adapted to converge the light having been transmitted through the light intensity control element, and a diffusion element which the light converged by the light collection optical system enters.
Abstract:
A projection apparatus includes a housing, a projection module, an electronic assembly and a heat dissipating module. The housing has first to fourth sides. The first and second sides are provided with air outlet and first air inlet respectively. A containing space is defined in the housing and has first and second areas. The heat dissipating module includes first to third heat dissipating members and first to second fans. The first, second, third heat dissipating members are connected to a light source module of the projection module. The first heat dissipating member is close to the air outlet. The second heat dissipating member is in the first area. The third heat dissipating member is in the first area and close to the second air inlet.
Abstract:
There is provided a light source unit including a light source case into which a plurality of optical members are incorporated, wherein the light source case has fixing portions for fixing the optical member which are provided in a position on a main body bottom plate of the light source case and in both side positions of the optical member above the main body bottom plate, and an upper fastening plate which presses down the optical member accommodated in the light source case, and wherein the fixing portions include a lower fixing portion where a primary positioning portion is formed on the main body bottom plate and side fixing portions where a pair of secondary positioning portions are formed which are brought into abutment with a surface of the optical member which is opposite to a surface thereof which is brought into abutment with the primary positioning portion.
Abstract:
According to the present invention, a projection type image display apparatus enables control of a large amount of light masking through a light-masking unit while maintaining a uniform illumination distribution in an area to be illuminated by the illumination light. The apparatus uses two array lenses on which lens cells are arranged in matrix form, where light-masking unit masks the array lens installed on the light source side in their particular area. The light-masking unit adjusts the amount of light emitted from the light source. The light-masking area of lens cells adjacent to lens cells closest to an optical axis is made smaller than the light-masking area of other cells.
Abstract:
An image projection apparatus includes: a grid portion provided on a housing of the apparatus and having a plurality of grids through which air flows in or out of the apparatus. The grid portion includes an edge portion of the grid portion, and a central portion of the grid portion, having a thickness thicker than a thickness of the edge portion of the grid portion.
Abstract:
A laser beam projection apparatus includes a first light source module including a red color laser light source, a green color laser light source, and a blue color laser light source, and a light source module for combination configured to be capable of emitting a laser beam and be used in combination with the first light source module according to use. The first light source module includes a first casing, and the light source module for combination includes a second casing. The first casing and the second casing have a common casing configuration including at least light source fitting portions.
Abstract:
A projection lamp utilizing light emitting diodes (LEDs) includes a housing, a lamp board positioned on the housing, an upper covering the lamp board, and a lens positioned above the upper cover. The lamp board includes a plurality of LEDs. A majority portion of the housing and the upper cover is composed of thermally conductive materials. The housing includes a plurality of latch holes, the upper cover includes a plurality of latching chambers corresponding to the latch holes, and the lens includes a plurality of latching members extending through the latching chambers to engage the housing latch holes.
Abstract:
A heat dissipation assembly for a projection apparatus is provided. The projection apparatus includes a light source, optical elements and a heat dissipation assembly. The heat dissipation assembly includes a case, a heat dissipation element, a fan and a temperature controlling unit. The optical elements transmit a light beam generated by the light source, and thereby generate heat. The heat dissipation assembly is adapted for heat dissipation correspondingly. In the heat dissipation assembly, the case protects the optical elements from being polluted by the dust during heat dissipation. The temperature controlling unit senses the surrounding temperature to control the fan for cooling the heat dissipation element, and the durability of the optical elements are thereby enhanced.
Abstract:
An apparatus and method for controlling the spectrum of stimulated Raman scattering that is used for despeckling of digitally projected images. The stimulated Raman scattering is utilized to add wavelength diversity for reduced speckle and to change the color of the light to a more desirable combination of wavelengths. Digital projection with color-sequential projectors may be enabled by alternately switching the Raman spectrum between green and red. Improved projector transmission may be achieved by minimizing the amount of yellow light generated in the Raman spectrum.
Abstract:
A display includes a light source, a first color wheel, a second color wheel, an actuator, a controller, and a light modulator. The light source is for providing a light beam. The first color wheel includes plural primary-color filtering areas, and the second color wheel includes plural left or right eye filtering areas. The actuator rotates the first color wheel and the second color wheel. The controller is for controlling the rotations of the first color wheel and the second color wheel, such that the light beam passing through the first color wheel and the second color wheel is filtered to plural left or right eye primary-color light beams with different spectra. The light modulator is for modulating the left or right primary-color light beams and projecting the modulated left or right primary-color light beams onto a screen to display an image.