摘要:
A dot-matrix display charging control method and system is proposed, which is designed for integration to a dot-matrix display device, such as a TFT-LCD (Thin Film Transistor Liquid Crystal Display), for controlling a data-refresh process on the dot-matrix display device. The proposed method and system is characterized by the capability of concurrently selecting a number of consecutive pixel rows in the dot-matrix panel for charging all of the pixel rows with the same set of data voltages from a master data row that is intended to be applied to one of the selected pixel rows, and then fine-tuning every other pixel row with a set of differential voltages based on the value differences between the master data row and a slave data row that is intended to be applied to the other pixel row. This feature allows the operation of a dot-matrix display device to use a long charging time for data refresh under a fast scan speed.
摘要:
A dot-matrix display data refresh voltage charging control method and system is proposed, which is designed for integration to a dot-matrix display device, such as TFT-LCD (Thin Film Transistor Liquid Crystal Display), for controlling a data-refresh process on the dot-matrix display device. The proposed method and system is characterized by the capability of performing data refresh by comparing for the differences between the currently-displayed pixel values and the new pixel values to be used for data refresh to thereby obtain a set of differential voltages for use to be applied to the pixels for data refresh. This feature allows the data-refresh process to use only a low level of differential voltage rather than the full-level of pixel data voltage for data refresh, thus allowing the data-refresh process to be completed in a reduced shorter time period to provide a fast scan speed.
摘要:
A touch display including a display panel, multiple first stripe electrodes, a substrate, multiple second stripe electrodes, and multiple spacers is provided. The display panel has a first surface, and the first stripe electrodes are disposed on the first surface. The substrate has a second surface, and the first surface faces the second surface. The second stripe electrodes are disposed on the second surface. A longitudinal direction of the first stripe electrodes is perpendicular to that of the second stripe electrodes. The spacers are disposed between the first surface of the display panel and the second surface of the substrate. Orthogonal projections of the spacers are on the display panel at locations where the first stripe electrodes are not disposed.
摘要:
A touch display including a display panel, multiple first stripe electrodes, a substrate, multiple second stripe electrodes, and multiple spacers is provided. The display panel has a first surface, and the first stripe electrodes are disposed on the first surface. The substrate has a second surface, and the first surface faces the second surface. The second stripe electrodes are disposed on the second surface. A longitudinal direction of the first stripe electrodes is perpendicular to that of the second stripe electrodes. The spacers are disposed between the first surface of the display panel and the second surface of the substrate. Orthogonal projections of the spacers are on the display panel at locations where the first stripe electrodes are not disposed.
摘要:
A touch panel device and a scanning method in the touch panel device are provided. The touch panel device includes first sensing lines, second sensing lines and a controlling module. The first sensing lines and the second sensing lines are alternately arranged and are in parallel with each other along a first direction. The controlling module is configured to scan the first sensing lines and the second sensing lines during a plurality of first frame periods and a plurality of second frame periods, respectively, which are alternately arranged according to a predetermined frame rate.