Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer operates a switching power circuit during active portions of half-cycles of the AC line voltage source that supplies the dimmer. A control circuit determines the durations of the active portions such that sufficient energy is transferred to operate the lighting devices until a next half-cycle of the AC line voltage, at which time the active portion of the half-cycle is terminated. A high impedance level is presented to the output of the dimmer until the next half-cycle commences.
Abstract:
A line-frequency determining circuit for coupling to the output of a thyristor-switched dimmer that determines a line-frequency of an AC power source that supplies an input to the thyristor-controlled dimmer permits accurate control of periodic probing of the dimmer output. The probing is performed to predict zero-cross times of the AC power source that, in turn, are used to determine a dimming control value of the thyristor-switched dimmer. A minimum conductance is applied across the output of the dimmer during the probing intervals that begin at the turn-on time of the dimmer and last until enough information has been gathered to correctly predict a next zero crossing of the AC line voltage that supplies the input of the dimmer. The probing can be performed at intervals of an odd number of half-cycles of the AC line frequency so that internal dimmer timer operation is not affected by DC offset.
Abstract:
Systems and methods for learning dimmer characteristics provide improved efficiency in operating lighting devices. In one embodiment, an apparatus includes a lamp controller that is configured to monitor voltage information associated with one or more lamps or a dimmer of a system, adjust one or more parameters of an attach current profile in conformity with the voltage information to arrive at a selected attach current profile, and apply within the system the selected attach current profile.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer includes a power converter for powering the high-efficiency lighting devices from input terminals of the circuit. The circuit also includes a control circuit that controls the input current drawn by the input terminals at least while the power converter transfers energy to the lighting devices. The circuit also includes a sensing circuit that determines or measures at least one attach current characteristic at the input terminals and stores an indication of the characteristic for subsequent operation of the control circuit.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as for LED-based light bulbs. The BJT may be switched on and off from a controller coupled to two terminals of the BJT. Through the two terminals, the control IC may dynamically adjust a reverse recovery time period of the BJT. The reverse recovery time period may be adjusted by changing an amount of base charge that accumulates on the BJT. Additional, the reverse recovery may be controlled through the use of a reverse base current source applied to the BJT after beginning switching off the BJT.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as for LED-based light bulbs. The BJT may be switched on and off from a controller coupled to two terminals of the BJT. Through the two terminals, the control IC may dynamically adjust a reverse recovery time period of the BJT. The reverse recovery time period may be adjusted by changing an amount of base charge that accumulates on the BJT. Additional, the reverse recovery may be controlled through the use of a reverse base current source applied to the BJT after beginning switching off the BJT.
Abstract:
An LED lighting device includes an auxiliary power supply that supplies power to a control circuit of the LED lighting device that receives an input from a terminal of a light-emitting diode (LED) string of the lighting device that has a substantially lower voltage than the line voltage to which the lighting device is connected. The terminal may be within the LED string, or may be an end of the string. A linear regulator may be operated from the voltage drop across a number of the LEDs in the string so that the energy wasted by the auxiliary power supply is minimized. In other designs, the auxiliary power supply may be intermittently connected in series with the LED string only when needed. The intermittent connection can be used to forward bias a portion of the LED string when the voltage supplied to the LED string is low, increasing overall brightness.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer includes a power converter for powering the high-efficiency lighting devices from input terminals of the circuit. The circuit also includes a control circuit that controls the input current drawn by the input terminals at least while the power converter transfers energy to the lighting devices. The circuit also includes a sensing circuit that determines or measures at least one attach current characteristic at the input terminals and stores an indication of the characteristic for subsequent operation of the control circuit.
Abstract:
An LED lighting device includes an auxiliary power supply that supplies power to a control circuit of the LED lighting device that receives an input from a terminal of a light-emitting diode (LED) string of the lighting device that has a substantially lower voltage than the line voltage to which the lighting device is connected. The terminal may be within the LED string, or may be an end of the string. A linear regulator may be operated from the voltage drop across a number of the LEDs in the string so that the energy wasted by the auxiliary power supply is minimized. In other designs, the auxiliary power supply may be intermittently connected in series with the LED string only when needed. The intermittent connection can be used to forward bias a portion of the LED string when the voltage supplied to the LED string is low, increasing overall brightness.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer operates a switching power circuit during active portions of half-cycles of the AC line voltage source that supplies the dimmer. A control circuit determines the durations of the active portions such that sufficient energy is transferred to operate the lighting devices until a next half-cycle of the AC line voltage, at which time the active portion of the half-cycle is terminated. A high impedance level is presented to the output of the dimmer until the next half-cycle commences.