Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as a converter in LED-based light bulbs. The power stage may be operated by a controller to maintain a desired current output to the LED load. The controller may operate the power stage by monitoring a start and end of a reverse recovery time of the BJT. Information regarding the start and end of the reverse recovery time may be used in the control of the power stage to improve efficiency of the power stage.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as for LED-based light bulbs. The BJT may be switched on and off from a controller coupled to two terminals of the BJT. Through the two terminals, the control IC may dynamically adjust a reverse recovery time period of the BJT. The reverse recovery time period may be adjusted by changing an amount of base charge that accumulates on the BJT. Additional, the reverse recovery may be controlled through the use of a reverse base current source applied to the BJT after beginning switching off the BJT.
Abstract:
A turn-off transition time period, also referred to as a reverse recovery time period, may be compensated for by a controller of a power stage including a bipolar junction transistor (BJT). The reverse recovery time period may be measured in one switching cycle and a subsequent switching cycle may include compensations based on the measured reverse recovery time period. That is the switching on and off of the BJT may be compensated to obtain a desired average output current to a load. When the reverse recovery time period is known, an error in the peak current obtained due to the reverse recovery time period may be calculated. The calculated error may be used to offset the target peak current for controlling the switching of the BJT to begin a turn-off transition of the BJT earlier in a switching cycle and thus reduce error in peak current at the BJT.
Abstract:
A turn-off transition time period, also referred to as a reverse recovery time period, may be compensated for by a controller of a power stage including a bipolar junction transistor (BJT). The reverse recovery time period may be measured in one switching cycle and a subsequent switching cycle may include compensations based on the measured reverse recovery time period. That is the switching on and off of the BJT may be compensated to obtain a desired average output current to a load. When the reverse recovery time period is known, an error in the peak current obtained due to the reverse recovery time period may be calculated. The calculated error may be used to offset the target peak current for controlling the switching of the BJT to begin a turn-off transition of the BJT earlier in a switching cycle and thus reduce error in peak current at the BJT.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as a converter in LED-based light bulbs. The power stage may be operated by a controller to maintain a desired current output to the LED load. The controller may operate the power stage by monitoring a start and end of a reverse recovery time of the BJT. Information regarding the start and end of the reverse recovery time may be used in the control of the power stage to improve efficiency of the power stage.
Abstract:
In one embodiment a heating mechanism is provided with an integrated circuit for testing and calibration purposes. During production testing, heating elements may be activated in order to quickly bring an integrated circuit up to operating temperature for temperature testing or calibration. Once the operating test temperature has been reached, the circuit can be quickly and easily tested to show it is operable within the design temperature range and/or to obtain calibration data to correct for temperature drift. Calibration data may be used to create correction data, which may be stored within the integrated circuit. During normal operation, the correction data may be used to compensate for variations in operation due to temperature.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as for LED-based light bulbs. The BJT may be switched on and off from a controller coupled to two terminals of the BJT. Through the two terminals, the control IC may dynamically adjust a reverse recovery time period of the BJT. The reverse recovery time period may be adjusted by changing an amount of base charge that accumulates on the BJT. Additional, the reverse recovery may be controlled through the use of a reverse base current source applied to the BJT after beginning switching off the BJT.