-
公开(公告)号:US10263633B2
公开(公告)日:2019-04-16
申请号:US15991619
申请日:2018-05-29
Inventor: John Paul Lesso , David Paul Singleton
Abstract: This application relates time-encoding modulators such as may be used as part of analogue-to-digital conversion. A time-encoding modulator (100) receives an analogue input signal (SIN) at an input node (102) and outputs a corresponding time-encoded signal (SOUT) at an output node (103). A hysteretic comparator (101) has a first comparator input connected to the input node and a comparator output connected to the output node. A feedback path extends between the output node and a second comparator input of the hysteretic comparator; with a filter arrangement (104) arranged to apply filtering to the feedback path. The hysteretic comparator (101) compares the input signal (SIN) to the feedback signal (SFB) with hysteresis. This provides a pulse-width modulated output signal (SOUT) where the duty cycle encodes the input signal (SIN).
-
公开(公告)号:US10254776B1
公开(公告)日:2019-04-09
申请号:US15851147
申请日:2017-12-21
Inventor: David Paul Singleton , Kapil Sharma
Abstract: This application relates to methods and apparatus for voltage regulation. Embodiments relate to signal processing circuit (300) having a first and second processing path with respective first and second inputs (INP and INN). The first and second processing paths have respective first and second virtual earth nodes (108P and 108N) at the input to a differential integrator (106). A differential feedback path is configured to apply a feedback signal to each of the first and second virtual earth nodes so as to minimize any voltage difference between them. A regulator (301) is operable to monitor a voltage at one of the virtual earth nodes (108P) against a reference voltage (VREF) and to generate a regulation signal to maintain the voltage at said monitored one of the first and second virtual earth nodes to be equal to the reference voltage. The regulation signal is applied to both of the first and second virtual earth nodes.
-
公开(公告)号:US11783171B2
公开(公告)日:2023-10-10
申请号:US16554984
申请日:2019-08-29
Inventor: Toru Ido , David Paul Singleton , Gordon James Bates , John Anthony Breslin
Abstract: This application relates to computing circuitry (200, 500, 600) for analogue computing. A plurality of current generators (201) are each configured to generate a defined current (ID1, ID2, . . . IDj) based on a respective input data value (D1, D2, . . . Dj). A memory array (202), having at least one set (204) of programmable-resistance memory cells (203), is arranged to receive the defined currents from each of the current generators at a respective signal line (206). Each set (204) of programmable-resistance memory cells (203) includes a memory cell associated with each signal line that, in use, can be connected between the relevant signal line and a reference voltage so as to generate a voltage on the signal line. An adder module (207) is coupled to each of the signal lines to generate a voltage at an output node (210) based on the sum of the voltages on each of the signal lines.
-
公开(公告)号:US10298247B1
公开(公告)日:2019-05-21
申请号:US15919985
申请日:2018-03-13
Inventor: Louis Frew , Kapil Sharma , David Paul Singleton , Andrew James Howlett
Abstract: This application relates to analog-to-digital converter (ADC) circuitry (200). A time-encoding modulator (TEM 201) has a comparator (104) and a loop filter (105) configured to generate a pulse-width-modulated (PWM) signal (SPWM) in response to an input signal (SIN) and a feedback signal (SFB). A controlled oscillator, such as a VCO (202) receives the PWM signal and generates an output oscillation signal (SOSC) with a frequency that varies based on a drive signal at a drive node (109), e.g. a drive node of a ring oscillator (107). The controlled oscillator (202) comprises at least one control switch (112) controlled by a switch control signal (S1) generated from the received PWM signal so as to control the drive strength of the drive signal applied to the drive node (109). The feedback signal (SFB) for the TEM (201) is derived from the controlled oscillator (202) so as to include any timing error between the PWM signal and the switch control signal (S1) applied to said control switch.
-
-
-