Techniques for implementing IPV6-based distributed storage space

    公开(公告)号:US11588783B2

    公开(公告)日:2023-02-21

    申请号:US15075163

    申请日:2016-03-20

    Abstract: A method is provided in one example embodiment and includes, for each of a plurality of individual storage units collectively comprising a virtual storage unit, mapping an internal address of the storage unit to a unique IP address, wherein each of the storage units comprises a block of storage on one of a plurality of physical storage devices and wherein the IP address includes a virtual storage unit number identifying the virtual storage unit; receiving from a client a request to perform an operation on at least one of the data storage units, wherein the request identifies the internal address of the at least one of the data storage units; translating the internal address of the at least one of the data storage unit to the unique IP address of the at least one of the data storage units; and performing the requested operation on the at least one of the data storage units.

    COMPUTER NETWORK PACKET TRANSMISSION TIMING
    3.
    发明申请

    公开(公告)号:US20200344333A1

    公开(公告)日:2020-10-29

    申请号:US16392533

    申请日:2019-04-23

    Abstract: Establishing an expected transmit time at which a network interface controller (NIC) is expected to transmit a next packet. Enqueuing, with the NIC and before the expected transmit time, a packet P1 to be transmitted at the expected transmit time. Upon enqueuing P1, incrementing the expected transmit time by an expected transmit duration of P1. Transmitting at the NIC's line rate and timestamping enqueued P1 with its actual transmit time. Adjusting the expected transmit time by a difference between P1's actual transmit and P1's expected transmit time. Requesting, before completion of transmitting P1, to transmit a P2 at time t(P2). Enqueuing, in sequence, zero or more P0, such that the current expected transmit time plus the duration of the transmission of the P0s at the line rate equals t(P2). Transmitting at the line rate each enqueued P0. Upon enqueuing each P0, incrementing, for each P0, the expected transmit time by the expected transmit duration of the P0. Enqueuing P2 for transmission directly following enqueuing the final P0. Transmitting, by the NIC, enqueued P2 at t(P2).

    SECURING MICRO-SERVICES
    6.
    发明申请

    公开(公告)号:US20190020665A1

    公开(公告)日:2019-01-17

    申请号:US15646389

    申请日:2017-07-11

    Abstract: A computing device running a local enforcement agent is configured to instantiate at least one application container at the computing device, where the at least one application container is part of a containerized application. The computing device is also configured to associate the local enforcement agent with the least one application container so that the local enforcement agent operates as an intra-application communication proxy for the least one application container. The local enforcement agent receives an intra-application Application Programming Interface (API) call that is sent to the at least one application container from a second application container that is part of the containerized application. The local enforcement agent is configured to analyze the intra-application API call for compliance with one or more security policies associated with the at least one container.

    ADAPTIVE TELEMETRY BASED ON IN-NETWORK CROSS DOMAIN INTELLIGENCE

    公开(公告)号:US20180027309A1

    公开(公告)日:2018-01-25

    申请号:US15660882

    申请日:2017-07-26

    CPC classification number: H04Q9/00 G08C25/00

    Abstract: Disclosed are systems, methods, and computer-readable storage media for adaptive telemetry based on in-network cross domain intelligence. A telemetry server can receive at least a first telemetry data stream and a second telemetry data stream. The first telemetry data stream can provide data collected from a first data source and the second telemetry data stream can provide data collected from a second data source. The telemetry server can determine correlations between the first telemetry data stream and the second telemetry data stream that indicate redundancies between data included in the first telemetry data stream and the second telemetry data stream, and then adjust, based on the correlations between the first telemetry data stream and the second telemetry data stream, data collection of the second telemetry data stream to reduce redundant data included in the first telemetry data stream and the second telemetry data stream.

Patent Agency Ranking