Abstract:
A network controller controls optical nodes configured to communicate with each other at multiple line rates using different tuples of [bits/symbol, symbol rate] for each line rate. The network controller determines multiple paths between two optical nodes, selects a desired line rate at which to communicate between the two optical nodes, and accesses a path database that indicates an available optical bandwidth and an available optical signal-to-noise ratio (SNR) along each path. The network controller determines feasible paths among the paths. To do this, the network controller, for each path, searches the different tuples of the desired line rate for a tuple for which a desired optical bandwidth and a desired optical SNR are accommodated by the available optical bandwidth and the available optical SNR of the path, respectively. The network controller programs optical nodes of one of the feasible paths with a tuple found in the searching.
Abstract:
Techniques for automatic bandwidth optimization of an optical communication channel in an optical network are provided. In one embodiment, a method of automatically optimizing bandwidth includes receiving, at a first optical network element, a first signal transmission transmitted according to a first set of transmission parameters over an optical communication channel established between the first optical network element and a second optical network element. The method includes determining a first quality of signal parameter associated with the first signal transmission and determining whether the first quality of signal parameter is worse than a predetermined quality of signal value. Upon determining that the first quality of signal parameter is not worse than the predetermined value, the method further includes transmitting a second set of transmission parameters to the second optical network element to further optimize the bandwidth of the optical communication channel.
Abstract:
An optical fiber carries optical channels injected into the optical fiber to a Raman amplifier. A controller determines a static tilt associated with the channels in the fiber due to wavelength dependent losses. A photodiode measures a total power of the channels at an output of the Raman amplifier. The controller determines a dynamic tilt associated with channels in the fiber based in part on the measured total power. The dynamic tilt is induced by Stimulated Raman Scattering (SRS) in the fiber and varies as a function of a total power of the signals injected into the fiber. The controller determines a total tilt with which to offset the static and dynamic tilts. The controller sets an amplifier gain tilt applied to the channels equal to the total tilt.
Abstract:
A method for optical restoration in an optical network is provided. A network controller obtains, from one or more optical nodes of an optical network, at least one failure notification indicating a failure of a primary path between a first node and a second node. The network controller forwards to a first set of optical nodes, data-plane parameters for optical components of the first set of optical nodes. The first set of optical nodes include the first node, the second node, and one or more intermediate nodes, and forms a restoration path for the primary path. The data-plane parameters for the optical components are forwarded in parallel to the first set of optical nodes of the restoration path so as to activate the restoration path in parallel. The network controller switches traffic from the primary path to the restoration path.
Abstract:
A network controller controls optical nodes configured to communicate with each other at multiple line rates using different tuples of [bits/symbol, symbol rate] for each line rate. The network controller determines multiple paths between two optical nodes, selects a desired line rate at which to communicate between the two optical nodes, and accesses a path database that indicates an available optical bandwidth and an available optical signal-to-noise ratio (SNR) along each path. The network controller determines feasible paths among the paths. To do this, the network controller, for each path, searches the different tuples of the desired line rate for a tuple for which a desired optical bandwidth and a desired optical SNR are accommodated by the available optical bandwidth and the available optical SNR of the path, respectively. The network controller programs optical nodes of one of the feasible paths with a tuple found in the searching.
Abstract:
In an optical communication network that includes a plurality of interconnected network nodes, a method includes storing in each network node, and for each communication channel that traverses the node, one or more impairment margins of respective impairments that affect the communication channel. A potential communication channel that traverses a subset of the nodes in the network is identified. A quality of the potential communication channel is evaluated by processing the impairment margins stored in the nodes in the subset.
Abstract:
Techniques are presented for automatic tuning of operating parameters, e.g., amplifier gain, in an optical network. A section of an optical network comprises a plurality of spans between optical nodes, and each optical node has an amplifier to amplify optical signals for transmission between optical nodes. Physical network layer data is obtained from the optical nodes for use as input to an analytical model. A set of powers defining an optimum working point of the amplifiers is computed based on variations in amplifier noise figure which depend on amplifier gain. A figure of merit representative of network section performance is computed based on linear and non-linear noise at current power levels of the amplifiers. The figure of merit is evaluated. The set of powers is applied to the amplifiers in the network section when evaluation of the figure of merit indicates that network performance improvement can be achieved.
Abstract:
A method of obtaining a measure of asymmetry between optical fibers of a forward and reverse paths is provided in order to synchronize clocks of optical nodes connected by asymmetrical optical fiber paths. The method includes receiving, at first and second arrival times, from a first optical network device, a first optical signal transmitted on a first optical fiber and a second optical signal transmitted on a second optical fiber, calculating a first time difference between the second arrival time and the first arrival time. The method includes determining a measure of asymmetry between the first optical fiber and the second optical fiber based on the first time difference and a second time difference between a first time of transmission by the first optical network device of the first optical signal and a second time of transmission by the first optical network device of the second optical signal.
Abstract:
A method of obtaining a measure of asymmetry between optical fibers of a forward and reverse paths is provided in order to synchronize clocks of optical nodes connected by asymmetrical optical fiber paths. The method includes receiving, at first and second arrival times, from a first optical network device, a first optical signal transmitted on a first optical fiber and a second optical signal transmitted on a second optical fiber, calculating a first time difference between the second arrival time and the first arrival time. The method includes determining a measure of asymmetry between the first optical fiber and the second optical fiber based on the first time difference and a second time difference between a first time of transmission by the first optical network device of the first optical signal and a second time of transmission by the first optical network device of the second optical signal.
Abstract:
At a first optical node of an optical communications system, during a signal initialization phase, a first optical pattern is received that includes a prefix indicating a beginning of a signal, a first word, and a first working signal for verifying stability of a connection between the first optical node and a second optical node of the optical communications system. A second optical pattern is transmitted that includes the prefix, a second word different from the first word, and the first working signal. A third optical pattern including the prefix, the first word, and a second working signal is received. Based on determining that a duration of the second working signal is greater than a duration of the first working signal plus a predetermined time, the first optical node determines that the second optical node is an adjacent node of the first optical node.