Abstract:
Described herein is a method and system for distributing requests and responses across a multi-core system. Each core executes a packet engine that further processes data packets allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine maintains the client IP address, selects a first port of the core, and determines whether a hash of a tuple comprising those values identifies the selected core. A modification is then made to the client request so that the client request includes a tuple comprising the client IP address, the server IP address, the first port and the server port.
Abstract:
Described herein is a method and system for distributing request and responses across a multi-core system. Each core executes a packet engine that further processes data packets allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine selects a first IP address and a first port of the core, and determines whether a hash of a tuple comprising those values identifies the selected core. A modification is then made to the client request so that the client request includes a tuple comprising the first IP address, the server IP address, the first port and the server port.
Abstract:
Systems and methods are described for link load balancing, by a multi-core intermediary device, a plurality of Internet links. The method may include load balancing, by a multi-core device intermediary to a plurality of devices and a plurality of Internet links, network traffic across the plurality of Internet links. The multi-core device providing persistence of network traffic to a selected Internet link based on a persistence type. A first core of the multi-core device receives, a packet to be transmitted via an Internet link to be selected from the plurality of Internet links. The first core sends to a second core of the multi-core device a request for persistence information responsive to identifying that the second core is an owner core of a session for persistence based on the persistence type. The first core receives the persistence information from the second core and determines to transmit the packet to the Internet link previously selected based on the persistence information received from the second core.
Abstract:
Described herein is a method and system for distributing requests and responses across a multi-core system. Each core executes a packet engine that further processes data packets allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine maintains the client IP address, selects a first port of the core, and determines whether a hash of a tuple comprising those values identifies the selected core. A modification is then made to the client request so that the client request includes a tuple comprising the client IP address, the server IP address, the first port and the server port.
Abstract:
Systems and methods are described for link load balancing, by a multi-core intermediary device, a plurality of Internet links. The method may include load balancing, by a multi-core device intermediary to a plurality of devices and a plurality of Internet links, network traffic across the plurality of Internet links. The multi-core device providing persistence of network traffic to a selected Internet link based on a persistence type. A first core of the multi-core device receives, a packet to be transmitted via an Internet link to be selected from the plurality of Internet links. The first core sends to a second core of the multi-core device a request for persistence information responsive to identifying that the second core is an owner core of a session for persistence based on the persistence type. The first core receives the persistence information from the second core and determines to transmit the packet to the Internet link previously selected based on the persistence information received from the second core.
Abstract:
The present disclosure is directed to systems and method for providing a virtual appliance. One or more application delivery controller appliances intermediary to a plurality of clients and a plurality of servers perform a plurality of application delivery control functions on network traffic communicated between the plurality of clients and the plurality of servers. A virtual application delivery controller is deployed on a device intermediary to the plurality of clients and the plurality of servers. The virtual application delivery controller executing on the device performs one or more of the plurality of application delivery control functions on network traffic communicated between the plurality of clients and the plurality of servers.
Abstract:
Described herein is a method and system for distributing request and responses across a multi-core system. Each core executes a packet engine that further processes data packets allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine selects a first IP address and a first port of the core, and determines whether a hash of a tuple comprising those values identifies the selected core. A modification is then made to the client request so that the client request includes a tuple comprising the first IP address, the server IP address, the first port and the server port.