Abstract:
The present application is directed towards systems and methods for managing ownership of one or more SSL sessions. A cluster of nodes intermediary between at least one client server may maintain a succession list for at least one session of a first client from the at least one client. The succession list may include a list of nodes within the cluster and an order of succession for the nodes to transfer ownership of the at least one session. A first node of the cluster may enter an operational state for managing one or more sessions between the at least one client and the at least one server. A second node of the cluster may initiate, based on the succession list and responsive to the first node entering the operational state, a transfer of ownership of the at least one session from the second node to the first node.
Abstract:
The present application is directed towards invalidating (also referred to as poisoning) ASDR table entries that are determined to be inaccurate because of changes to a multi-node system. For example, when a node leaves or enters a multi-node system, the ownership of the entries in the ASDR table can change thus invalidating cached and replica entries. More specifically, the system and methods disclosed herein include searching an ASDR table for cached entries responsive to the system determining the multi-node system has changed. After finding a cached entry, the system may determine if the entry should be poisoned. The decision to poison the entry may be responsive to the creation time of the entry, the time when the change to the multi-node system occurred, and in the case of a replica, the owner of the replica's position in a replication chain relative to source of the replica.
Abstract:
The present invention is directed towards systems and methods deploying a virtual server on a subset of devices in a cluster of devices. A first device of a cluster of devices intermediary between at least one client and at least one server, may identify a first virtual server to establish on one or more devices of the cluster. The first device may associate, to the identified virtual server, a group comprising a subset of devices in the cluster of devices. The cluster may establish the first virtual server on each device in the group responsive to associating the group to the first virtual server. Each virtual server on each device of the group may be assigned a same internet protocol address.
Abstract:
The present application is directed towards using a distributed hash table to track the use of resources and/or maintain the persistency of resources across the plurality of nodes in the multi-node system. More specifically, the systems and methods can maintain the persistency of resources across the plurality of nodes by the use of a global table. A global table may be maintained on each node. Each node's global table enables efficient storage and retrieval of distributed hash table entries. Each global table may contain a linked list of the cached distributed hash table entries that are currently stored on a node.
Abstract:
The present disclosure is directed towards systems and methods for managing application delivery in a network. A device intermediary to a client and one or more servers that provide a plurality of applications, receives a request from the client to access a first application of the plurality of applications. The device holds the request and retrieves, while holding the request, configuration information for an instance of the first application from a configuration repository. The device configures a virtual internet protocol (“VIP”) server using the configuration information for the instance of the first application. The device processes the request via the VIP server.
Abstract:
The present disclosure is directed towards systems and methods for managing application delivery in a network. A device intermediary to a client and one or more servers that provide a plurality of applications, receives a request from the client to access a first application of the plurality of applications. The device holds the request and retrieves, while holding the request, configuration information for an instance of the first application from a configuration repository. The device configures a virtual internet protocol (“VIP”) server using the configuration information for the instance of the first application. The device processes the request via the VIP server.
Abstract:
The present application is directed towards invalidating (also referred to as poisoning) ASDR table entries that are determined to be inaccurate because of changes to a multi-node system. For example, when a node leaves or enters a multi-node system, the ownership of the entries in the ASDR table can change thus invalidating cached and replica entries. More specifically, the system and methods disclosed herein include searching an ASDR table for cached entries responsive to the system determining the multi-node system has changed. After finding a cached entry, the system may determine if the entry should be poisoned. The decision to poison the entry may be responsive to the creation time of the entry, the time when the change to the multi-node system occurred, and in the case of a replica, the owner of the replica's position in a replication chain relative to source of the replica.
Abstract:
The present disclosure is directed towards systems and methods for managing application delivery in a network. A device intermediary to a client and one or more servers that provide a plurality of applications, receives a request from the client to access a first application of the plurality of applications. The device holds the request and retrieves, while holding the request, configuration information for an instance of the first application from a configuration repository. The device configures a virtual internet protocol (“VIP”) server using the configuration information for the instance of the first application. The device processes the request via the VIP server.
Abstract:
The present disclosure is directed towards systems and methods for managing application delivery in a network. A device intermediary to a client and one or more servers that provide a plurality of applications, receives a request from the client to access a first application of the plurality of applications. The device holds the request and retrieves, while holding the request, configuration information for an instance of the first application from a configuration repository. The device configures a virtual internet protocol (“VIP”) server using the configuration information for the instance of the first application. The device processes the request via the VIP server.
Abstract:
The present application is directed towards systems and methods for managing ownership of one or more SSL sessions. A cluster of nodes intermediary between at least one client server may maintain a succession list for at least one session of a first client from the at least one client. The succession list may include a list of nodes within the cluster and an order of succession for the nodes to transfer ownership of the at least one session. A first node of the cluster may enter an operational state for managing one or more sessions between the at least one client and the at least one server. A second node of the cluster may initiate, based on the succession list and responsive to the first node entering the operational state, a transfer of ownership of the at least one session from the second node to the first node.