Abstract:
Methods and apparatuses for supporting aircraft components, including actuators are disclosed. An apparatus in accordance with one embodiment of the invention includes an actuator housing having an actuator receptacle that securely yet releasably receives an actuator. The actuator receptacle can include conformal walls that conform at least in part to the shape of the actuator and can accordingly squeeze the actuator and properly align the actuator. At least one of the actuator walls can further include a projection that is releasably received in a corresponding recess of the actuator. One of both of these features can releasably secure the actuator relative to the aircraft, reducing and/or eliminating the likelihood that the actuator will be misaligned and/or mispositioned relative to the aircraft during installation and/or replacement.
Abstract:
A method and apparatus for retrieving an aircraft in a confined space involves hanging a cable, for example from a kite or mast, across the aircraft's flight path. The aircraft approaches the cable in steady forward flight, and may strike the cable at any point on the wing, fuselage, or other leading surface. The cable then slides along the airframe as the aircraft moves forward, until it is intercepted by a hook attached to the wing tip or other convenient location. The hook captures the cable, and prevents further sliding; the cable then pulls the aircraft to a stop. Compliance of the cable, optionally combined with compliance of the cable suspension, provides acceptably gradual deceleration. The aircraft is left suspended in mid-air, and is then winched or slid to the base of the cable or other convenient retrieval point. The cable suspension and other fixed objects can be kept well clear of the flight path, so that the aircraft can continue safely in the event that it misses the cable, and make another approach.
Abstract:
Disclosed herein are compositions containing natural acids and natural buffering agents useful for inhibiting mold growth and/or prolonging the shelf life of baked products, which do not require propionic acid, and may be in either a liquid or a dry form. Also disclosed are methods of using the disclosed compositions.
Abstract:
Systems and methods for capturing and controlling post-recovery motion of an unmanned aircraft are disclosed herein. An aircraft system in accordance with one embodiment of the invention, for example, can include a line capture assembly carried by an unmanned aircraft having a fuselage and a lifting surface. The line capture assembly can include a flexible support line having a first portion attached to an attachment point on the fuselage and a second portion extending from the attachment point spanwise along the lifting surface of the aircraft. The line capture assembly can also include an engagement device coupled to the second portion of the support line. The engagement device is releasably secured to the lifting surface.
Abstract:
Methods and apparatuses for capturing, recovering, disassembling, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the boom can be extended to deploy a recovery line to capture the aircraft in flight, a process that can be aided by a line capture device having retainers in accordance with further aspects of the invention. The aircraft can then be returned to its launch platform, disassembled, and stored, again with little or no direct manual contact between the operator and the aircraft, for example, by capturing a first wing of the aircraft and securing a second wing before releasing the first.
Abstract:
Methods and apparatuses for capturing, recovering, disassembling, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the boom can be extended to deploy a recovery line to capture the aircraft in flight, a process that can be aided by a line capture device having retainers in accordance with further aspects of the invention. The aircraft can then be returned to its launch platform, disassembled, and stored, again with little or no direct manual contact between the operator and the aircraft, for example, by capturing a first wing of the aircraft and securing a second wing before releasing the first.
Abstract:
A gem faceting kit is disclosed which includes a portable carrying case that may be opened to a use position in which it constitutes a utility rack from which other items of the kit may be retrieved and conveniently used. The gem faceting kit includes a gem faceting machine that has a storage and a use position. Also included in the kit are various lap wheels, grinding compounds, a rinse dispenser, a catch basin, a lamp, a visor, and various other tools, chemicals, and compounds used in gem faceting. The entire kit is lightweight and portable.
Abstract:
Adjustable servomechanism assemblies and associated systems and methods. An unmanned aircraft system in accordance with one embodiment of the disclosure includes a movable mechanism and a servomechanism assembly operably coupled to the movable mechanism. The system also includes an interface assembly operably coupled to an output shaft of the servo and the movable mechanism. The interface assembly includes an adapter portion carried by the output shaft and an output arm releasably engaged with the adapter portion. The adapter portion includes a first aperture having a non-round surface mated with a non-round surface of the output shaft, and a non-splined, engagement surface. The output arm includes a second aperture sized to receive at least a portion of the outer surface of the adapter portion. The second aperture includes a generally smooth inner surface in contact with and rotatable through 360 degrees relative to the engagement surface of the adapter portion.
Abstract:
Adjustable servomechanism assemblies and associated systems and methods are disclosed herein. An unmanned aircraft system in accordance with one embodiment of the disclosure includes a movable mechanism and a servomechanism assembly operably coupled to the movable mechanism. The system also includes an interface assembly operably coupled to an output shaft of the servo and the movable mechanism. The interface assembly includes an adapter portion carried by the output shaft and an output arm releasably engaged with the adapter portion. The adapter portion includes a first aperture having a non-round surface mated with a non-round surface of the output shaft, and a generally smooth, non-splined, engagement surface. The output arm includes a second aperture sized to receive at least a portion of the outer surface of the adapter portion. The second aperture includes generally smooth inner surface in contact with and rotatable through 360 degrees relative to the engagement surface of the adapter portion.
Abstract:
Systems and methods for capturing and controlling post-recovery motion of an unmanned aircraft are disclosed herein. An aircraft system in accordance with one embodiment of the invention, for example, can include a line capture assembly carried by an unmanned aircraft having a fuselage and a lifting surface. The line capture assembly can include a flexible support line having a first portion attached to an attachment point on the fuselage and a second portion extending from the attachment point spanwise along the lifting surface of the aircraft. The line capture assembly can also include an engagement device coupled to the second portion of the support line. The engagement device is releasably secured to the lifting surface.