摘要:
A method and apparatus are provided to improve large field of view CT image acquisition by using at least two scanning procedures: (i) one with the radiation source and detector centered and (ii) one in an offset configuration. The imaging data obtained from both of the scanning procedures is used in the reconstruction of the image. In addition, a method and apparatus are provided for detecting motion in a reconstructed image by generating a motion map that is indicative of the regions of the reconstructed image that are affected by motion artifacts. Optionally, the motion map may be used for motion estimation and/or motion compensation to prevent or diminish motion artifacts in the resulting reconstructed image. An optional method for generating a refined motion map is also provided.
摘要:
A method and apparatus are provided to improve CT image acquisition using a displaced acquisition geometry. A CT apparatus may be used having a source (102) and a detector (104) transversely displaced from a center (114) of a field of view (118) during acquisition of the projection data. The amount of transverse displacement may be determined based on the size of the object (108). The source and the detector may be adjusted to vary the size of the transverse field of view. The first data set acquired by the detector may be reconstructed and used to simulate missing projection data that could not be acquired by the detector at each projection angle. The measured projection data and the simulated projection data may be used to obtain a second data set. The second data set may be compared to the first data set to produce a corrected data set.
摘要:
A method and apparatus are provided to improve CT image acquisition using a displaced acquisition geometry. A CT apparatus may be used having a source (102) and a detector (104) transversely displaced from a center (114) of a field of view (118) during acquisition of the projection data. The amount of transverse displacement may be determined based on the size of the object (108). The source and the detector may be adjusted to vary the size of the transverse field of view. The first data set acquired by the detector may be reconstructed and used to simulate missing projection data that could not be acquired by the detector at each projection angle. The measured projection data and the simulated projection data may be used to obtain a second data set. The second data set may be compared to the first data set to produce a corrected data set.
摘要:
It is provided a method for imaging a dynamic process in a part of the body, especially blood perfusion, with an x-ray system as well as corresponding apparatuses and a corresponding computer readable medium. Especially it is described a method for imaging a dynamic process in a part of the body, especially blood perfusion, with an x-ray system, comprising: acquiring rotational projections of the part of the body over an angular range (2), deriving the anatomy of the part of the body subject to the dynamic process using a tomographic reconstruction from the projections (3), determining an optimal position of the x-ray system according to the derived anatomy for acquiring projections of the dynamic process (4), administering contrast agent to the part of the body (5), acquiring projections of the dynamic process from the determined position (6); calculating the dynamic contrast enhancement over time (7); and calculating and displaying perfusion parameters (8).
摘要:
Adaptively controlling an imaging system (200, 205) includes constructing model feature characteristics (105) of a process over time, determining parameters and commands (110) for controlling the imaging system for each state of the process, performing data acquisition (120) for the process, extracting current features (130) of the process from the acquired data, matching (135) the current features (130) with the model feature characteristics (105) to determine a state of the process (140), and controlling the data acquisition based on the state of the process to produce optimized data.
摘要:
Adaptively controlling an imaging system (200, 205) includes constructing model feature characteristics (105) of a process over time, determining parameters and commands (110) for controlling the imaging system for each state of the process, performing data acquisition (120) for the process, extracting current features (130) of the process from the acquired data, matching (135) the current features (130) with the model feature characteristics (105) to determine a state of the process (140), and controlling the data acquisition based on the state of the process to produce optimized data.
摘要:
When generating a 3D image of a subject or patient, a cone beam X-ray source (20a, 20b) is mounted to a rotatable gantry (14) opposite an offset flat panel X-ray detector (22a, 22b). A wedge-shaped attenuation filter (24a, 24b) of suitable material (e.g., aluminum or the like) is adjustably positioned in the cone beam to selectively attenuate the beam as a function of the shape, size, and density of a volume of interest (18) through which X-rays pass in order to maintain X-ray intensity or gain at a relatively constant level within a range of acceptable levels.
摘要:
A method and an apparatus for motion visualization of a moving object in angiographic images are described. In a preferred embodiment of the method, first a mask image of the object of interest is acquired and a sequence of angiographic images of the object in different phases of motion of the object is acquired. Then, a first angiographic subtraction image and at least a second angiographic subtraction image are generated by subtracting the angiographic images from the mask image. Subsequently, a twice subtracted image is generated by subtracting the first angiographic subtraction image from the second angiographic subtraction image. In this way a double subtraction, i.e. a twice subtracted angiography is performed, to facilitate the assessment of the motion.
摘要:
When generating a 3D image of a subject or patient, a cone beam X-ray source (20a, 20b) is mounted to a rotatable gantry (14) opposite an offset flat panel X-ray detector (22a, 22b). A wedge-shaped attenuation filter (24a, 24b) of suitable material (e.g., aluminum or the like) is adjustably positioned in the cone beam to selectively attenuate the beam as a function of the shape, size, and density of a volume of interest (18) through which X-rays pass in order to maintain X-ray intensity or gain at a relatively constant level within a range of acceptable levels.
摘要:
A method and an apparatus for motion visualization of a moving object in angiographic images are described. In a preferred embodiment of the method, first a mask image of the object of interest is acquired and a sequence of angiographic images of the object in different phases of motion of the object is acquired. Then, a first angiographic subtraction image and at least a second angiographic subtraction image are generated by subtracting the angiographic images from the mask image. Subsequently, a twice subtracted image is generated by subtracting the first angiographic subtraction image from the second angiographic subtraction image. In this way a double subtraction, i.e. a twice subtracted angiography is performed, to facilitate the assessment of the motion.