Abstract:
An adjustable phase shifter includes an RF signal input, an RF signal output, a first delay line, a second delay line and a first electrowetting-activated switch disposed between the RF signal input and the RF signal output.
Abstract:
An exemplary antenna system has first and second antenna elements, where a diplexer is connected to each second element. First phase shifters are connected to the first elements and to the diplexers, and second phase shifters are connected to the diplexers, but not to the first elements. Either a different bandpass filter is connected to the first and second phase shifters or a single multiplexer is connected to all phase shifters. The antenna system can be used to support communications over first and second sub-bands with independent beam tilts and equivalent beamwidths, where all of the elements are used for the first sub-band, and the second elements, but not the first elements, are used for the second sub-band. Each first element is separated from an adjacent element by a first distance, and each second element is separated from an adjacent element by a second distance different from the first distance.
Abstract:
Multi-band phased array antennas include a backplane, a vertical array of low-band radiating elements that form a first antenna beam, first and second vertical arrays of high-band radiating elements that form respective second and third antenna beams and a vertical array of RF lenses. The first, second and third antenna beams point in different directions. A respective one of the second radiating elements and a respective one of the third radiating elements are positioned between the backplane and each RF lens, and at least some of the first radiating elements are positioned between the RF lenses.
Abstract:
An exemplary antenna system has first and second antenna elements, where a diplexer is connected to each second element. First phase shifters are connected to the first elements and to the diplexers, and second phase shifters are connected to the diplexers, but not to the first elements. Either a different bandpass filter is connected to the first and second phase shifters or a single multiplexer is connected to all phase shifters. The antenna system can be used to support communications over first and second sub-bands with independent beam tilts and equivalent beamwidths, where all of the elements are used for the first sub-band, and the second elements, but not the first elements, are used for the second sub-band. Each first element is separated from an adjacent element by a first distance, and each second element is separated from an adjacent element by a second distance different from the first distance.
Abstract:
Phased array antennas include a plurality of radiating elements and a plurality of RF lenses that are generally aligned along a first vertical axis. Each radiating element is associated with a respective one of the RF lenses, and each radiating element is tilted with respect to the first vertical axis.
Abstract:
An exemplary antenna system has first and second antenna elements, where a diplexer is connected to each second element. First phase shifters are connected to the first elements and to the diplexers, and second phase shifters are connected to the diplexers, but not to the first elements. Either a different bandpass filter is connected to the first and second phase shifters or a single multiplexer is connected to all phase shifters. The antenna system can be used to support communications over first and second sub-bands with independent beam tilts and equivalent beamwidths, where all of the elements are used for the first sub-band, and the second elements, but not the first elements, are used for the second sub-band. Each first element is separated from an adjacent element by a first distance, and each second element is separated from an adjacent element by a second distance different from the first distance.
Abstract:
A lensed antenna is provided. The lensed antenna includes a linear array of radiating units that are spaced apart from one another in a longitudinal direction. Each radiating unit includes a first radiating element and a second radiating element that is arranged proximate to the first radiating element. Either of the first radiating element or the second radiating element is operable to resonate at a first frequency and a combination of the first radiating element and the second radiating element is operable to resonate at a second frequency that is different from the first frequency. A lens is positioned to receive electromagnetic radiation from at least one of the radiating units.
Abstract:
Lensed antennas are provided that include a plurality of radiating elements and a lens positioned to receive electromagnetic radiation from at least one of the radiating elements, the lens comprising a composite dielectric material. The composite dielectric material comprises expandable gas-filled microspheres that are mixed with an inert binder, dielectric support materials such as foamed microspheres and particles of conductive material that are mixed together.
Abstract:
Phased array antennas include a plurality of radiating elements and a plurality of RF lenses that are generally aligned along a first vertical axis. Each radiating element is associated with a respective one of the RF lenses, and each radiating element is tilted with respect to the first vertical axis.
Abstract:
Phased array antennas include a plurality of radiating elements and a plurality of RF lenses that are generally aligned along a first vertical axis. Each radiating element is associated with a respective one of the RF lenses, and each radiating element is tilted with respect to the first vertical axis.