Abstract:
According to a preferred embodiment, the present invention features a bulk catalyst that includes precipitated cobalt metal. The precipitated cobalt catalyst further includes a textural promoter, a binder and optionally a Group I metal. The method of making the catalyst is optimized so as to enhance attrition resistance and improve activity. According to some embodiments, the present catalyst is made by a method that includes one or a combination of: calcination under optimized temperature conditions; exposure to an acidic solution; and addition of a binder to a suspension of a precipitate. According to some embodiments, a Fischer-Tropsch process includes contacting the present catalyst with a feed stream containing carbon monoxide and hydrogen so as to produce hydrocarbons.
Abstract:
Methods and apparatus for improving the efficiency and effectiveness of in situ reduction of a Fischer-Tropsch catalyst slurry. The preferred embodiments of the present invention are characterized by a system that utilizes a co-feed of carbon monoxide along with the reducing gas into a reduction vessel maintained at an elevated temperature. As the metal oxide reduces to the active Fischer-Tropsch metal, the carbon monoxide acts as a poison to hydrogenolysis and reduces the loss of liquid from the slurry and the production of methane. The carbon monoxide is generally in parts-per-million quantities and will achieve the desired results in quantities less than 5,000 ppm, preferably less than 2,000 ppm.