Abstract:
A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer includes an input waveguide taper having an outer waveguiding region that widens in the direction of light propagation along at least a portion of the taper length, and a core waveguiding region that narrows in the direction of light propagation along at least a portion of the taper length, so as to selectively squeeze out light of undesired modes into the outer regions while preserving light of a desired mode in the waveguide core. An integrated light absorber/deflector may be coupled to the outer waveguiding regions.
Abstract:
A skew compensation apparatus and method. In an optical system that uses optical signals, skew may be generated as the optical signals are processed from an input optical signal to at least two electrical signals representative of the phase-differentiated optical signals. A compensation of the skew is provided by including an optical delay line in the path of the optical signal that does not suffer the skew (e.g., that serves as the time base for the skew measurement). The optical delay line introduces a delay Tskew equal to the delay suffered by the optical signal that is not taken as the time base. The two signals are thereby corrected for skew.
Abstract:
A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer includes an input waveguide taper having an outer waveguiding region that widens in the direction of light propagation along at least a portion of the taper length, and a core waveguiding region that narrows in the direction of light propagation along at least a portion of the taper length, so as to selectively squeeze out light of undesired modes into the outer regions while preserving light of a desired mode in the waveguide core. An integrated light absorber/deflector may be coupled to the outer waveguiding regions.
Abstract:
A qualification apparatus for a photonic chip on a wafer that leaves undisturbed an edge coupler that provides an operating port for the photonic devices or circuits on the chip during normal operation in order to not introduce extra loss in the optical path of the final circuit. The qualification apparatus provides an optical path that is angled with regard to the surface of the chip, for example by using a grating coupler. The qualification apparatus can be removed after the chip is qualified. Optionally, the qualification apparatus can be left in communication with the chip and optionally employed as an input port for the chip after the chip has been separated from other chips on a common substrate.
Abstract:
A skew compensation apparatus and method. In an optical system that uses optical signals, skew may be generated as the optical signals are processed from an input optical signal to at least two electrical signals representative of the phase-differentiated optical signals. A compensation of the skew is provided by including an optical delay line in the path of the optical signal that does not suffer the skew (e.g., that serves as the time base for the skew measurement). The optical delay line introduces a delay Tskew equal to the delay suffered by the optical signal that is not taken as the time base. The two signals are thereby corrected for skew.
Abstract:
A variable power splitter apparatus and methods of using the same. In some cases, polarization dependent losses in a polarization-multiplexed system are minimized. In the systems and methods described here, in various configurations, the variable power splitter is either tunable or calibrated such that the difference in power between two optical loads is controlled to provide equal power after the respective light components traverse the respective optical loads. The result is that the average power is used. In one example, if the variable power splitter is tuned to balance the polarization dependent losses which occur in a 2:1 ratio, it would have a coupling ratio of 66/33, with the higher power going into the arm with twice the loss. The power in each path is then equal with a loss of 1.8 dB instead of 3 dB.
Abstract:
A circuit that allows the control of a parameter in each arm of a Mach-Zehnder interferometer or modulator in push-pull mode using a single control terminal and a ground (or a differential driving circuit). The parameter that is controlled can be a phase shift, a modulation or an attenuation. The magnitude and the frequency of the parameter can be adjusted.