Abstract:
A process for operating an axial skinning apparatus for continuous manufacture of skinned ceramic honeycomb parts, including: determining the physical process parameters of the apparatus including: the rheology of the flowable skin cement; the geometry of the part to be skinned; and the geometry of the annulus gap of the skinning chamber; and calculating a plurality of dimensionless pressure gradient values (Lambda (Λ)) according to the formula (1): Λ = ( Δ P ) R 2 m L ( R V ) n ( 1 ) where ΔP, P, R, V, L, and m and n are as defined herein; plotting a plurality of manifold pressures versus a plurality of part velocities; and selecting at least one operating window based on the skin quality of a plurality of preliminarily skinned parts.
Abstract:
An apparatus (10) for forming the outer layers of a glass laminate sheet comprises a reservoir (12), individual first (14a) and second (14b) distributors extending below and in fluid communication with the reservoir, and first (30a) and second (30b) slots positioned respectively at the bottom of the first and second distributors. The slots have a length, the distributors have sides and a middle, and the length of the slots on the sides of the distributors is desirably decreased relative to the length of the slots in the middle of the distributors. The apparatus is useful with a trough or isopipe (100) to provide clad glass streams to contact an over-flowing core glass on respective sides of the trough or isopipe.
Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
A process for operating an axial skinning apparatus for continuous manufacture of skinned ceramic honeycomb parts, including: determining the physical process parameters of the apparatus including: the rheology of the flowable skin cement; the geometry of the part to be skinned; and the geometry of the annulus gap of the skinning chamber; and calculating a plurality of dimensionless pressure gradient values (Lambda (Λ)) according to the formula (1): Λ = ( Δ P ) R 2 m L ( R V ) n ( 1 ) where ΔP, P, R, V, L, and m and n are as defined herein; plotting a plurality of manifold pressures versus a plurality of part velocities; and selecting at least one operating window based on the skin quality of a plurality of preliminarily skinned parts.
Abstract:
An apparatus (10) for forming the outer layers of a glass laminate sheet comprises a reservoir (12), individual first (14a) and second (14b) distributors extending below and in fluid communication with the reservoir, and first (30a) and second (30b) slots positioned respectively at the bottom of the first and second distributors. The slots have a length, the distributors have sides and a middle, and the length of the slots on the sides of the distributors is desirably decreased relative to the length of the slots in the middle of the distributors. The apparatus is useful with a trough or isopipe (100) to provide clad glass streams to contact an overflowing core glass on respective sides of the trough or isopipe.
Abstract:
A skinning apparatus and a method of skinning a porous ceramic. The apparatus includes an axial skinning manifold. The axial skinning manifold includes a curved adaptive pipe to flow cement in a circumferential direction from an inlet at a first position and through an adaptive opening along an inner bend of the curve through a land channel disposed along the inner bend. The land channel emits the cement at a constant velocity from a land opening extending proximate the first position to a second position spaced apart from the first position. The land outlet emits cement at a constant velocity around the outer periphery of the porous ceramic to dispose a uniform skin thereon as the porous ceramic moves axially relative to the land outlet.
Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
A skinning apparatus and a method of skinning a porous ceramic. The apparatus includes an axial skinning manifold. The axial skinning manifold includes a curved adaptive pipe to flow cement in a circumferential direction from an inlet at a first position and through an adaptive opening along an inner bend of the curve through a land channel disposed along the inner bend. The land channel emits the cement at a constant velocity from a land opening extending proximate the first position to a second position spaced apart from the first position. The land outlet emits cement at a constant velocity around the outer periphery of the porous ceramic to dispose a uniform skin thereon as the porous ceramic moves axially relative to the land outlet.
Abstract:
A skinning apparatus and a method of skinning a porous ceramic. The apparatus includes an axial skinning manifold. The axial skinning manifold includes a curved adaptive pipe to flow cement in a circumferential direction from an inlet at a first position and through an adaptive opening along an inner bend of the curve through a land channel disposed along the inner bend. The land channel emits the cement at a constant velocity from a land opening extending proximate the first position to a second position spaced apart from the first position. The land outlet emits cement at a constant velocity around the outer periphery of the porous ceramic to dispose a uniform skin thereon as the porous ceramic moves axially relative to the land outlet.
Abstract:
A resonant waveguide article, including: a polymeric substrate having at least one integral grating region, wherein the article has a low birefringence property of for example, from about 5 to 270 nm/cm, as defined herein. Also disclosed is a microplate including the resonant waveguide article, and an integral well plate bonded to the sensor article, as defined herein. Also disclosed are methods of making a sensor article, and a method of making and using the microplate including the sensor article, as defined herein.