摘要:
A planar optical device useful as a low order wavelength router is realized by using a waveguide grating comprising two curved arrays of opposite curvatures. The diffraction order is determined by the angles of rotation of the two curved arrays, and any nonzero order less than about 30 can be realized. This arrangement is smaller, and performs better than a previous grating using a combination of three curved arrays.
摘要:
The limitation of N in an N×N Wavelength Grating Router (WGR) is determined to be because of the intrinsic diffraction characteristics of the grating that occurs when N approaches the diffraction order m at which the grating operates. The N in a N×N WGR device is maximized for input signal channels equally spaced either in frequency or in wavelength. For the wavelength case, N is increased by appropriate changes in the spacing of the output ports of the WGR and/or by slightly correcting the by channels wavelengths.
摘要:
When two star couplers are cascaded so as to perform two Fourier transformations without phase distortions, an imaging arrangement results which accurately reproduces at the output the input distribution. In order to achieve high efficiency of power transfer between a relatively large number of input ports and a relatively large number of output ports and a small star-coupler physical size, the input and output waveguides connected to the star coupler must be relatively narrow and be closely spaced at the star coupler. However close spacing gives rise to significant mutual coupling between adjacent waveguides, leading to undesirable crosstalk between the channels of the device. We have discovered that the phase distortion is approximately periodic and may be compensated for by adding or subtracting length to the waveguides between the star couplers. The path length correction is essentially a sinusoid with the minimum increase in required path length being applicable to the ports at the centers of the star-coupler Brillouin zones and the maximum increase in required length being applicable to the ports at the edges of the star-coupler Brillouin zones.
摘要:
A router combines free-space and guided wave optics to drastically increase the number of channels used in WDM transmission systems. The two-stage router uses the partial demultiplexing characteristic of an arrayed waveguide router (AWR) combined with a free-space optical router to fully demultiplex an input WDM signal. The two-stage router can be used to obtain output wavelength signals in either one- or two-dimensional arrays.
摘要:
An optimized planar optical router consisting of two stages performing stationary imaging between an input waveguide and a set of output waveguides has advantages of reduced size, larger number of channels and minimal loss variation in each passband. The new router is an optimized M×N imaging arrangement including two waveguide gratings and n waveguide lenses connected between the principal zones of the two gratings. The largest values of N are realized by using a combination of two techniques that increase N without increasing the size of the two gratings. One technique increases N for a given number n of lenses and, the other, increases n. In one embodiment, each lens produces a periodic sequence of passbands, all transmitted from a particular input waveguide to the same output waveguide, whereas, in a second embodiment, the above passbands are transmitted to different output waveguides. In both cases, the loss caused by secondary images is substantially reduced by including secondary lenses.
摘要:
An optimized planar optical router consisting of two stages performing stationary imaging between an input waveguide and a set of output waveguides has advantages of reduced size, larger number of channels and minimal loss variation in each passband. Each stage is a waveguide grating router, the two stages are characterized by nearly equal free-spectral ranges, and a waveguide lens is connected between the two stages. In one embodiment, the lens is connected between the central zones of the two stages, and the diffraction orders of the two stages vary monotonically from each passband to the next. In another embodiment, the loss caused by secondary images is substantially reduced by using a composite lens providing efficient transmission of both principal and secondary images.
摘要:
A waveguide grating router having an improved passband flatness with lower loss is provided that includes a first optical coupling device having at least one input port, at least one mode converter, and P output ports, where P>2. A second optical coupling device is also provided that has P input ports, least one output port, and at least one mode converter. P optical paths couple the input port of the first optical coupling device to the output port of the second optical coupling device. The mode converters control the magnitudes of various transmission coefficients contributed by the optical paths of the router. The phases of the various contributions are determined by the optical path lengths, and these lengths are chosen so that certain contributions are opposite to other contributions.
摘要:
An optimized planar optical router consisting of two stages performing stationary imaging between an input waveguide and a set of output waveguides has advantages of reduced size, larger number of channels and minimal loss variation in each passband. The new router is an optimized M×N imaging arrangement including two waveguide gratings and n waveguide lenses connected between the principal zones of the two gratings. The largest values of N are realized by using a combination of two techniques that increase N without increasing the size of the two gratings. One technique increases N for a given number n of lenses and, the other, increases n. In one embodiment, each lens produces a periodic sequence of passbands, all transmitted from a particular input waveguide to the same output waveguide, whereas, in a second embodiment, the above passbands are transmitted to different output waveguides. In both cases, the loss caused by secondary images is substantially reduced by including secondary lenses.
摘要:
A planar optical device useful as a low order wavelength router is realized by using a waveguide grating comprising two curved arrays of opposite curvatures. The diffraction order is determined by the angles of rotation of the two curved arrays, and any nonzero order less than about 30 can be realized. This arrangement is smaller, and performs better than a previous grating using a combination of three curved arrays.
摘要:
A filtering system for eliminating dispersion caused by filtering an optical signal with a birefringent filter. Dispersion is eliminated by causing each signal to be passed twice through a birefringent filter. Dispersion created by the first pass is canceled out by dispersion created in the second pass. The same filter may be used for both passes with a polarization rotation applied between the two passes. Specifically, the first pass produces dispersion defined by transmission coefficients C and D. Because of the polarization rotation, the second pass creates dispersion defined by the complex conjugates of transmission coefficients C and D, which cancel out dispersion caused by the first pass. Mathematically, each transmission coefficient of the first pass is multiplied by its complex conjugate of the second pass, and the resulting transmission coefficients |C|2, |D|2 are entirely free of dispersion caused by the filter. A method for filtering an optical signal using a birefringent filter to eliminate dispersion is also provided.
摘要翻译:一种用于消除由双折射滤光片过滤光信号引起的色散的滤波系统。 通过使每个信号通过双折射滤光片两次来消除色散。 由第一遍产生的色散由第二遍产生的色散消除。 相同的过滤器可以用于在两次通过之间施加偏振旋转的两个通道。 具体地,第一遍产生由传输系数C和D定义的色散。由于偏振旋转,第二遍产生由传输系数C和D的复共轭定义的色散,其消除由第一遍导致的色散。 在数学上,第一遍的每个传输系数乘以其第二遍的复共轭,并且所得到的传输系数| C | 2,| D | 2完全没有由过滤器引起的色散。 还提供了一种使用双折射滤波器对光信号进行滤波以消除色散的方法。