Abstract:
A system and method executed by audio processing software on one or more electronic devices in a computer system to process digital audio signals. The system comprises a digitizer for digitizing a received audio signal; and processor for performing a plurality of audio processing functions on the digitized audio signals, each of the audio processing functions having at least one programmable parameter, and wherein each of the audio processing functions are categorized and grouped as audio objects, and organized into a channel strip, the channel strip processing digitized audio signals for a particular received audio signal, and wherein, the audio objects are fixed in order, so that the digitized received audio signals are processed by a predefined number of N audio objects, and wherein the N audio objects occur in a fixed sequence, and further wherein, the N audio objects comprise a first subset of non-exchangeable audio objects and a second subset of exchangeable audio objects, such that any one or more of the second subset of audio objects can be exchanged by a replacement audio object, and further wherein when the audio processing functions are programmed, they can be saved without compiling the audio processing software.
Abstract:
A multi-channel Class D audio amplifier is provided to substantially reduce channel-to-channel crosstalk by employing in each channel a local triangle ramp generator controlled by a single global digital timing signal. The noise critical timing/integrating capacitor for the triangle ramp generator resides locally in each channel and adjacent to the PWM comparator of that channel and referenced to the local ground of that channel. The amplifier can also include a duty cycle limitation circuit to limit output power availability depending on the impedance of any attached loads (speakers).
Abstract:
A room monitoring System is provided, comprising: a speaker; a microphone; and a digital signal processor (DSP) adapted to generate and transmit a first audio test signal to the speaker to be broadcast in the room, wherein the first audio test signal comprises a power spectral density that is inversely proportional to its frequency, and wherein the transmitted first audio test signal is reflected within the room, and wherein the DSP is further adapted to process the reflected broadcast first audio test signal received by the microphone, generate and save a frequency-amplitude analysis of the received first audio test signal as an initial reference curve, periodically test the room in a substantially similar manner to generate one or more additional reference curves, and compare the one or more additional reference curves to determine whether they are within a known, predetermined tolerance of the initial reference curve.
Abstract:
A multi-channel Class D audio amplifier is provided to substantially reduce channel-to-channel crosstalk by employing in each channel a local triangle ramp generator controlled by a single global digital timing signal. The noise critical timing/integrating capacitor for the triangle ramp generator resides locally in each channel and adjacent to the PWM comparator of that channel and referenced to the local ground of that channel. The amplifier can also include a duty cycle limitation circuit to limit output power availability depending on the impedance of any attached loads (speakers).
Abstract:
An audio processing device for use in a network connected audio conferencing system is provided, comprising: a network microphone array comprising two or more microphones (mics) and a beamforming circuit, wherein the network mic array is adapted to acquire acoustic audio signals, convert the same to electric audio signals, perform audio beamforming on the electric audio signals, and output a digital combined beamforming circuit output signal that comprises a first signal part and a second signal part, and wherein the first signal part comprises a first set of digital bits that comprises an active beam index, and wherein the active beam index encodes a selected beam position out of a possible N beam positions, and wherein the second signal part comprises a second set of digital bits that comprises a beamformed audio signal; a receiver adapted to receive the digital combined beamforming circuit output signal and split the same into the first signal part and the second signal part; a plurality of acoustic echo cancellation filter devices, each of which are adapted to receive the second signal part and a far end reference audio signal from a far end audio processing device, and perform acoustic echo cancellation on the beamformed audio signal in view of the far end audio signal; and an AEC filter circuit controller adapted to receive the first signal part, decipher the active beam index encoded in the first beamformed audio signal part to determine which of the N beam positions is active, and select a corresponding one of the plurality of acoustic echo cancellation filter devices based on the active one of N beam positions to generate an output audio signal from the audio processing device to be transmitted to the far end audio processing device.
Abstract:
A multi-channel Class D audio amplifier is provided to substantially reduce channel-to-channel crosstalk by employing in each channel a local triangle ramp generator controlled by a single global digital timing signal. The noise critical timing/integrating capacitor for the triangle ramp generator resides locally in each channel and adjacent to the PWM comparator of that channel and referenced to the local ground of that channel. The amplifier can also include a duty cycle limitation circuit to limit output power availability depending on the impedance of any attached loads (speakers).
Abstract:
A multi-channel Class D audio amplifier is provided to substantially reduce channel-to-channel crosstalk by employing in each channel a local triangle ramp generator controlled by a single global digital timing signal. The noise critical timing/integrating capacitor for the triangle ramp generator resides locally in each channel and adjacent to the PWM comparator of that channel and referenced to the local ground of that channel. The amplifier can also include a duty cycle limitation circuit to limit output power availability depending on the impedance of any attached loads (speakers).
Abstract:
An audio processing device for use in a network connected audio conferencing system is provided, comprising: a network microphone array comprising two or more microphones (mics) and a beamforming circuit, wherein the network mic array is adapted to acquire acoustic audio signals, convert the same to electric audio signals, perform audio beamforming on the electric audio signals, and output a digital combined beamforming circuit output signal that comprises a first signal part and a second signal part, and wherein the first signal part comprises a first set of digital bits that comprises an active beam index, and wherein the active beam index encodes a selected beam position out of a possible N beam positions, and wherein the second signal part comprises a second set of digital bits that comprises a beamformed audio signal; a receiver adapted to receive the digital combined beamforming circuit output signal and split the same into the first signal part and the second signal part; a plurality of acoustic echo cancellation filter devices, each of which are adapted to receive the second signal part and a far end reference audio signal from a far end audio processing device, and perform acoustic echo cancellation on the beamformed audio signal in view of the far end audio signal; and an AEC filter circuit controller adapted to receive the first signal part, decipher the active beam index encoded in the first beamformed audio signal part to determine which of the N beam positions is active, and select a corresponding one of the plurality of acoustic echo cancellation filter devices based on the active one of N beam positions to generate an output audio signal from the audio processing device to be transmitted to the far end audio processing device.
Abstract:
A system and method executed by audio processing software on one or more electronic devices in a computer system to process digital audio signals. The system comprises a digitizer for digitizing a received audio signal; and processor for performing a plurality of audio processing functions on the digitized audio signals, each of the audio processing functions having at least one programmable parameter, and wherein each of the audio processing functions are categorized and grouped as audio objects, and organized into a channel strip, the channel strip processing digitized audio signals for a particular received audio signal, and wherein, the audio objects are fixed in order, so that the digitized received audio signals are processed by a predefined number of N audio objects, and wherein the N audio objects occur in a fixed sequence, and further wherein, the N audio objects comprise a first subset of non-exchangeable audio objects and a second subset of exchangeable audio objects, such that any one or more of the second subset of audio objects can be exchanged by a replacement audio object, and further wherein when the audio processing functions are programmed, they can be saved without compiling the audio processing software.
Abstract:
A system and method executed by audio processing software on one or more electronic devices in a computer system to process digital audio signals. The system comprises a digitizer for digitizing a received audio signal; and processor for performing a plurality of audio processing functions on the digitized audio signals, each of the audio processing functions having at least one programmable parameter, and wherein each of the audio processing functions are categorized and grouped as audio objects, and organized into a channel strip, the channel strip processing digitized audio signals for a particular received audio signal, and wherein, the audio objects are fixed in order, so that the digitized received audio signals are processed by a predefined number of N audio objects, and wherein the N audio objects occur in a fixed sequence, and further wherein, the N audio objects comprise a first subset of non-exchangeable audio objects and a second subset of exchangeable audio objects, such that any one or more of the second subset of audio objects can be exchanged by a replacement audio object, and further wherein when the audio processing functions are programmed, they can be saved without compiling the audio processing software.