Abstract:
A method of operating an engine in a vehicle equipped with an evaporative emissions system is described. The engine is configured to perform automatically an engine stop and an engine restart when the vehicle stops moving to increase fuel economy of the vehicle. The method includes the steps of determining if an engine stop is allowed while a diagnostic test of the of the evaporative emissions system is being performed if an engine stop is requested, and preventing the engine stop if the engine stop is not allowed.
Abstract:
A method for monitoring an evaporative emissions control (EVAP) system that includes compensating a diagnostic leakage test based on a fuel consumption amount during a test interval is disclosed. The method includes establishing a leak test pressure in the EVAP system, operating the operating the associated valves and pumps such that the EVAP system is expected to be isolated, determining an actual pressure change of the EVAP system, determining an expected pressure change of the EVAP system based on vehicle operating conditions that include the fuel consumption amount, and indicating that a leak is detected if the actual pressure change differs from the expected pressure change by more than a difference threshold.
Abstract:
A method for diagnosing the performance of a refueling event detection system for a vehicle is provided. The method includes the steps of a) determining a fuel change amount based on a difference of an indicated fuel amount and a previously indicated fuel amount, b) determining a consumed amount of fuel consumed by the engine since a prior refueling event was detected, and c) diagnosing the performance of the refueling event detection system based on the consumed amount and the fuel change amount.