Abstract:
A fuel property detecting device includes an electrode part; a voltage conversion part; a standard voltage application part; an amplifying part; a temperature detection unit; a storage unit; a first calculation unit; a second calculation unit for calculating alcohol concentration in fuel based on capacitance calculated by the first unit, present fuel temperature, and a map indicating a first relationship between capacitance and fuel temperature; a third calculation unit; a conductivity determination unit for determining whether present conductivity calculated by the third unit is a predetermined conductivity or larger; a fourth calculation unit for calculating a second relationship between conductivity and fuel temperature based on past conductivity, past fuel temperature, present conductivity calculated by the third unit, and present fuel temperature; and an abnormality determination unit for determining whether the electrode part is abnormal based on the second relationship, and a coefficient of temperature properties indicating the second relationship.
Abstract:
A motor control system controls a rotation drive of a motor by serially switching a power supply phase of the motor based on a count value of an output signal from an encoder and prevents a temporary noise from causing an abnormal rotation of such a motor. A microcomputer determines that one of an A phase signal or a B phase signal is a noise when the two signals are input at substantially at the same timing and one of the two signals has a shorter time interval from a previous input signal. Thus, a temporary noise is prevented from corrupting normal operation between the encoder count, the rotation position of the motor, and the power supply phase.
Abstract:
An electrode unit includes a first electrode and a second electrode, which define a space to flow fuel therethough. A detection circuit is connected to the first electrode to charge and discharge the electrode unit and to detect a capacitance of fuel, which flows through the space. A switch device is equipped to a wiring, which connects the second electrode with the ground, and configured to simulate disconnection between the second electrode and the ground. A malfunction detection unit is configured to detect disconnection of the wiring when a difference between a capacitance, which is detected with the detection circuit when the switch device is turned ON, and a capacitance, which is detected with the detection circuit when the switch device is turned OFF, is smaller than a first threshold.
Abstract:
An electrode unit includes a first electrode and a second electrode, which define a space to flow fuel therethough. A detection circuit is connected to the first electrode to charge and discharge the electrode unit and to detect a capacitance of fuel, which flows through the space. A switch device is equipped to a wiring, which connects the second electrode with the ground, and configured to simulate disconnection between the second electrode and the ground. A malfunction detection unit is configured to detect disconnection of the wiring when a difference between a capacitance, which is detected with the detection circuit when the switch device is turned ON, and a capacitance, which is detected with the detection circuit when the switch device is turned OFF, is smaller than a first threshold.
Abstract:
A shift range control apparatus controls driving of a motor in a shift range switching system provided with the motor and a shift range switching mechanism. A drive controller controls the driving of the motor to fit an engaging member in a recess according to a shift range in response to that the shift range is switched. A polarity determination device determines a polarity of a stator, which faces a rotor. The drive controller causes the engaging member to move to the recess according to the shift range, and then performs cancel energization control to energize a coil with a cancellation current which is a current reducing the magnetic flux density of the stator according to the polarity of the stator.
Abstract:
A motor controller includes a motor, an encoder, and a control circuit. The motor drives a target object to be controlled. The encoder outputs a pulse signal synchronously with rotation of the motor. The control circuit rotates the motor based on a count value of the pulse signal. The control circuit switches to a sleep mode when making sure that a rotation position of the motor is stable after finishing rotating the motor or when a predetermined time necessary for the rotation position of the motor to be stable elapses after finishing rotating the motor. When a change in the pulse signal during a period of time where the control circuit is in the sleep mode is not smaller than a predetermined amount, the control circuit performs a learning process to learn a reference position of the motor when returning to a wakeup mode from the sleep mode.
Abstract:
A shift range control apparatus controls driving of a motor in a shift range switching system provided with the motor and a shift range switching mechanism. A drive controller controls the driving of the motor to fit an engaging member in a recess according to a shift range in response to that the shift range is switched. A polarity determination device determines a polarity of a stator, which faces a rotor. The drive controller causes the engaging member to move to the recess according to the shift range, and then performs cancel energization control to energize a coil with a cancellation current which is a current reducing the magnetic flux density of the stator according to the polarity of the stator.
Abstract:
A controller has an encoder that outputs four-phase pulse signals according to a rotation of a rotor of a motor by a rule. During a rotational drive of the motor, when (i) an abnormal pulse state is observed in which the pulse signal is output in a non-compliant manner with the rule and (ii) a lapse time from a last normal output timing, which is a last timing of an output of the pulse signal by the rule, is longer than a threshold determination time, it is conclusively determined that the encoder has abnormality. Thus, the encoder is provided with an improved noise-proof character, and is prevented from being falsely determined as abnormal due to the abnormal pulse state, even when an output of the pulse signal from the encoder is temporarily ridden by a noise.
Abstract:
A motor control apparatus includes a counter, a margin calculation portion, and a cycle set portion. The counter counts a total number of switching the current supply phase of the coils when the rotor is rotationally driven. A rotation angle of the rotor is detected on a basis of the number of switching. The margin calculation portion calculates a torque margin that is a difference between an output torque of the motor and a load torque acting on the motor. The cycle set portion sets a current supply switching cycle to shorten as the torque margin is greater. The current supply switching cycle is a cycle switching the current supply phase of the coils.
Abstract:
An adhering matter determination portion includes an irradiation portion, a light receiving portion and a determination portion. The irradiation portion radiates a light to a plurality of different areas of a transparent plate. The light receiving portion converts reflected waves reflected at the different areas into electrical signals. The determination portion compares at least one of detection signals outputted from the light receiving portion with a determination threshold. When the detection signal is lower than the determination threshold, the determination portion determines that there is an adhering matter on the transparent plate. The determination portion compares the detection signals. When a difference of the detection signals is higher than a condensation determination value, the determination portion determines that the adhering matter is raindrops. When the difference of the detection signals is lower than the condensation determination value, the determination portion determines that the adhering matter is dewdrops.