Abstract:
A power transmission apparatus for wireless power transfer to a movable power receiving apparatus includes a power transmission resonator that includes a power transmission coil and a transmission resonance capacitor unit, and a power transmission circuit for supply of alternating-current power to the power transmission resonator. The power transmission apparatus includes a power-transfer request signal receiver configured to receive a power-transfer request signal transmitted from the power receiving apparatus, and a switching unit. The switching unit is configured to, when the power-transfer request signal receiver receives the power-transfer request signal, change an input impedance of the power transmission resonator to change a value of current flowing through the power transmission coil of the power transmission resonator to a controlled value enabled to transfer power from the power transmission coil to the power receiving apparatus.
Abstract:
A contactless power supply system for transferring power without contact between a primary side coil and a secondary side coil is provided. In the contactless power supply system, a manipulation unit manipulates a secondary side converter so that power outputted to a load is controlled to be a command value. The manipulation unit manipulates an input voltage of a primary side resonance circuit so that a current flowing in the primary side resonance circuit equals a product of a current flowing in the secondary side resonance circuit and a current coefficient. The current coefficient is defined as a square root of a specific value and the specific value is an equivalent resistance of the secondary side resonance circuit divided by an equivalent resistance of the primary side resonance circuit.
Abstract:
A battery charger of a battery charging apparatus is disposed on an exterior case of an engine in such a manner that a generated heat is transferred therebetween. An ECU drives a cooling system when an engine temperature and temperature of the battery charger satisfy a predetermined cooling temperature condition. A cooling capacity for cooling the battery charger is improved by establishing a heat radiation passage to radiate a heat from the battery charger efficiently.
Abstract:
A non-contact power supply device includes: a power transmission coil that generates a magnetic flux by an alternating current; a power transmission circuit that supplies the alternating current to the power transmission coil; a power transmission side control circuit that controls the power transmission circuit; a power receiving coil that generates an alternating current by interlinking the magnetic flux generated in the power transmission coil; and a power receiving circuit that converts the alternating current supplied from the power receiving coil into a direct current, and supplies the direct current to the power supply target. The power transmission side control circuit obtains a voltage vector target value based on a relationship between a voltage vector and a current vector, and controls the power transmission circuit to set the voltage vector of the alternating current output from the power transmission circuit to be the voltage vector target value.
Abstract:
A power supply apparatus configures an on-board power supply system that includes a first battery and a second battery. A first module and a first detecting unit are electrically connected to the first battery as a first electrical load. A second module and a second detecting unit are electrically connected to the second battery as a second electrical load. The first module and the second module configure an electric power steering apparatus. A starter is electrically connected to the first battery. The first battery and the second battery are electrically connected by a connection path. A resistor unit is provided on the connection path.
Abstract:
A contactless power supply system includes: a power supply pad including a power supply core formed of a magnetic material, and a power supply coil that uses the power supply core as a magnetic path; and a filter circuit including an inductor coil, the filter circuit being connected to the power supply pad. The power supply pads to which the respective filter circuits are connected are brought into a face-to-face relation so that electric power is transmitted from one power supply pad to the other power supply pad in a contactless manner. An inductor coil of at least either one of the filter circuits is provided to the power supply core of the power supply pad to which the filter circuit is connected, and the inductor coil uses the power supply core as a magnetic path.
Abstract:
A metal object detection device includes a plurality of detection coils, a capacitor configuring a resonant circuit in cooperation with each of at least two of the detection coils, a first series connection body, a second series connection body, a voltage applying unit, and a processing unit. The voltage applying unit applies an AC voltage to both ends of each of the first series connection body and the second series connection body. The processing unit performs a process for detecting the metal object on the basis of a potential difference between a connection point included in the first series connection body and a connection point included in the second series connection body.
Abstract:
A wireless power transfer system comprises: a power conversion unit generating power to be transmitted to a power reception coil; a power transmission unit group constituted by two or more power transmission units, each power transmission unit having a power transmission circuit including a power transmission coil; a control unit controlling supply of power from the power conversion unit to the power transmission unit group; and a position detection unit detecting a position of a mobile body. The control unit, based on position information, supplies power from the power conversion unit to a power transmission unit group that satisfies a power transmission condition including that a distance of the power transmission coil relative to the power reception coil of the mobile body is less than or equal to a predetermined threshold, and does not supply power to a power transmission unit group that does not satisfy the power transmission condition.
Abstract:
In an in-motion power supply system with a plurality of power supply segments to supply power to a vehicle, a vehicle position detection unit detects a position of the vehicle relative to each segment. An electrical characteristic acquisition unit acquires electrical characteristics in the segment involved in power transfer, and an abnormality determination unit uses the electrical characteristics to determine whether there is an abnormality in the segment involved in power transfer. The abnormality determination unit shares the electrical characteristics between a subject segment subjected to abnormality determination and at least one of a previous segment previous to the subject segment and a subsequent segment subsequent to the subject segment, and compares the electrical characteristics in the subject segment with at least either the electrical characteristics in the previous segment or the electrical characteristics in the subsequent segment to determine whether the electrical characteristics in the subject segment are abnormal.
Abstract:
A contactless power supply system is provided for supplying electric power to a vehicle in a contactless manner during traveling of the vehicle. The contactless power supply system includes a plurality of primary coils installed along a traveling direction in a road and a secondary coil mounted to the vehicle. Each of the primary coils is a single-phase coil with the secondary coil being a multi-phase coil, or is a multi-phase coil with the secondary coil being a single-phase coil.