Abstract:
An HUD device includes a laser scanner that projects laser light carrying a display image, and a screen member that has a plurality of optical elements arrayed in the form of a grating, and diffuses laser light which emanates from the laser scanner and enters the optical elements toward a projection surface. The optical elements have curved surfaces, which take on a convexly curved form as a common curved form, formed as their faces, and diffuse laser light which is emitted to the projection surface from the curved surfaces. A sag quantity from each of surface vertices of the curved surfaces to each of boundaries among the optical elements differs between adjoining optical elements.
Abstract:
An HUD device includes a laser scanner that projects laser light carrying a display image, and a screen member that has a plurality of optical elements arrayed in the form of a grating, and diffuses laser light which emanates from the laser scanner and enters the optical elements toward a projection surface. The optical elements have curved surfaces, which take on a convexly curved form as a common curved form, formed as their faces, and diffuse laser light which is emitted to the projection surface from the curved surfaces. The optical elements are configured so that an element width differs in at least one array direction of the array of the grating between adjoining optical elements.
Abstract:
Each of a plurality of optical elements that are arrayed in a lattice pattern in a screen member which diffuses a laser beam incident from a projector to guide the laser beam toward a projection surface has a curved surface on a side thereof, and the curved surface has a common convexly curved shape, and diffuses the laser beam which is emitted from the curved surface toward the projection surface. The respective optical elements include a plurality of reference elements which serve as a reference and a plurality of peripheral elements which are adjacent to the respective reference elements. The respective reference elements and the respective adjacent peripheral elements are formed by offsetting surface vertexes of the curved surfaces in a stepwise manner. Offset amounts generated between the respective reference elements and the respective adjacent peripheral elements are different from each other.
Abstract:
A head-up display apparatus projects a display image onto a projection surface of a windshield so that a viewer views a virtual image of the display image from an eye box. A screen used in the apparatus is constructed of a plurality of micromirrors. Each micromirror has a convex surface portion being curved to magnify a laser beam toward the eye box. A scanned surface of the screen is provided by an array of the convex surface portions. In a cross section intersecting the scanned surface, adjacent convex surface portions have different curved shapes. Thus, brightness unevenness of the display image caused by interference of laser beams can be reduced while maintaining a simple structure of the screen such as a microlens array.
Abstract:
A head-up display (10) equipped to a vehicle includes a front view information acquisition unit (22, S110, S120), a virtual image display unit (22, S180), and a size adjustment unit (22, S140-S160). The front view information acquisition unit acquires front view information indicative of an object existing on a travelling road of the vehicle. The virtual image display unit controls lights generated for displaying an object marker corresponding to the object indicated by the front view information acquired by the front view information acquisition unit to be reflected on a windshield (6) and displays the object marker as a virtual image in front of the vehicle. When the object is positioned ahead of the virtual image of the object marker in a traveling direction of the vehicle, the size adjustment unit adjusts a size of the object marker so that a length of the object marker in a width direction of the vehicle is at least equal to or longer than a display reference length, which is defined as a length of a line segment that connects, along the width direction of the vehicle and passing through the position where the virtual image of the object marker is formed, a straight line connecting a right eye of a driver of the vehicle with the object and another straight line connecting a left eye of the driver with the object.
Abstract:
A head-up display device including a screen member, a first generation portion, and a second generation portion is provided. The screen member is provided with multiple optical elements each of which has a curved surface portion and forms a scan surface by an array of the curved surface portions. The first generation portion generates a first laser beam that is irradiated to the scan surface to draw a display image. The second generation portion generates a second laser beam to draw a display image that is irradiated to the scan surface from a direction different from the first laser beam.
Abstract:
A head-up display device including a screen member, a first generation portion, and a second generation portion is provided. The screen member is provided with multiple optical elements each of which has a curved surface portion and forms a scan surface by an array of the curved surface portions. The first generation portion generates a first laser beam that is irradiated to the scan surface to draw a display image. The second generation portion generates a second laser beam to draw a display image that is irradiated to the scan surface from a direction different from the first laser beam.
Abstract:
A head-up display apparatus includes a projector that projects a laser beam and a screen including a plurality of optical elements that are arranged in a grid pattern. The screen diffuses the laser beam, which has entered into the plurality of optical elements from the projector, toward the projection plane. Each of the plurality of optical elements has a curved surface formed into a convex or a concave shape on an outside surface of the screen. One of the plurality of optical elements has a thickness at a curvature center point that is different from that of the other of the plurality of optical elements immediately adjacent to the one of the plurality of optical elements.
Abstract:
A head-up display apparatus projects a display image onto a projection surface of a windshield so that a viewer views a virtual image of the display image from an eye box. A screen used in the apparatus is constructed of a plurality of micromirrors. Each micromirror has a convex surface portion being curved to magnify a laser beam toward the eye box. A scanned surface of the screen is provided by an array of the convex surface portions. In a cross section intersecting the scanned surface, adjacent convex surface portions have different curved shapes. Thus, brightness unevenness of the display image caused by interference of laser beams can be reduced while maintaining a simple structure of the screen such as a microlens array.
Abstract:
A head-up display apparatus forms a virtual image of a display image viewed from a viewpoint region by projecting the display image onto a projection face. The apparatus includes a screen member and an optical device. The screen member includes an image formation face that forms the display image. The optical device includes a reflection face, which receives and reflects the display image by the image formation face, to project onto the projection face. The image formation face includes, in a grid array, convex portions and concave portions, which are convex and concave from a virtual reference face and alternated with each other along x axis and y axis. A perpendicular line to the virtual reference face at any position of the image formation face passes through an outside of the reflection face of the optical device.