Abstract:
A lateral insulated gate bipolar transistor includes a semiconductor substrate including a drift layer, a collector region, a channel layer, an emitter region, a gate insulating layer, a gate electrode, a collector electrode, an emitter electrode, and a barrier layer. The barrier layer is disposed along either side of the collector region and is located to a depth deeper than a bottom of the channel layer. The barrier layer has an impurity concentration that is higher than an impurity concentration of the drift layer. The barrier layer has a first end close to the collector region and a second end far from the collector region. The first end is located between the channel layer and the collector region, and the second end is located on the bottom of the channel layer.
Abstract:
A semiconductor device includes a semiconductor substrate, an interlayer dielectric film, a plurality of pad parts, a wiring layer, and a surface protection film. The semiconductor substrate includes a semiconductor element on a surface of the semiconductor substrate. The interlayer dielectric film is disposed on the surface of the semiconductor substrate. The wiring layer is disposed in the interlayer dielectric film. The hard film is disposed opposite to the semiconductor substrate with respect to the interlayer dielectric film, and is harder than the interlayer dielectric film, The pad parts are disposed opposite to the interlayer dielectric film with respect to the hard film, The surface protection film is disposed in at least an opposing region where the pad parts oppose to each other. The surface protection film is a silicon nitride film or a silicon oxide film.
Abstract:
A semiconductor device having a lateral insulated gate bipolar transistor includes a first conductivity type drift layer, a second conductivity type collector region formed in a surface portion of the drift layer, a second conductivity type channel layer formed in the surface portion of the drift layer, a first conductivity type emitter region formed in a surface portion of the channel layer, and a hole stopper region formed in the drift layer and located between the collector region and the emitter region. Holes are injected from the collector region into the drift layer and flow toward the emitter region through a hole path. The hole stopper region blocks a flow of the holes and narrows the hole path to concentrate the holes.