Abstract:
To provide a polarization element having good polarization properties and excellent in heat dissipation property and manufacturing costs. In order to solve the above problem, a polarization element 1 of the present disclosure includes a substrate 10 made of a transparent inorganic material; a grid structural body 20 which is made of a transparent material, and includes a base portion 21 provided along a surface of the substrate 10 and protruding portions 22 protruding from the base portion 21 in a grid; and an optical functional layer 30 which is formed on the protruding portions 22, and includes an absorptive layer for absorbing light, a reflective layer for reflecting light, or a multilayer having at least the absorptive layer and the reflective layer.
Abstract:
There is provided an optical body including: a base material; a second optical layer, formed on at least one surface of the base material, that reduces a reflection of extraneous light; and a first optical layer, laminated on top of a part of the second optical layer, that extracts internally propagating light incident inside the base material from a side face of the base material to an outside of the base material. On a surface of the first optical layer, a first concave-convex structure that reflects the internally propagating light is formed.
Abstract:
Provided are a polarizing plate having excellent optical characteristics, and a method for manufacturing the polarizing plate. The present invention is provided with: a translucent substrate through which light passes in a working band; a bundle structure layer constituted of a columnar sheaf comprising one or more material from among dielectrics, metals, and semiconductors, the bundle structure layer being formed on the translucent substrate; an absorption layer formed on the bundle structure layer; a dielectric layer formed on the absorption layer; and a reflection layer formed on the dielectric layer and arranged as a one-dimensional lattice at a pitch that is smaller than the wavelength of the light in the working band. Because the bundle structure layer increases light absorption and light scattering, the result is that reflectivity can be reduced and excellent optical characteristics obtained.
Abstract:
Provided is a polarizing element in which a desired polarization characteristics are achieved and the transmissivity is also good. The polarizing element comprises: a substrate transparent to light having a bandwidth to be used; and a grid pattern made of a translucent material and configured such that a plurality of projection portions continuous in one in-plane direction of said substrate are formed on a surface of the substrate at a pitch smaller than a wavelength of light having a bandwidth to be used, wherein each of the projection portions includes a base portion with a rectangular cross-section and a tapered surface portion formed at a top of the base portion, a fine particle layer made of an inorganic material is laminated on at least one surface of said tapered surface portion, and the fine particle layer does not protrude over a side face of the base portion.
Abstract:
Provided is a wire grid polarizing element excellent in heat dissipation and excellent in transmissivity and polarization splitting properties for oblique incident light at wide-range incident angles. A wire grid polarizing element 1 of a hybrid type made of an inorganic material and an organic material includes a substrate 10 made of the inorganic material, a grid structural body 20 made of the organic material and including a base part 21 provided on the substrate 10 and a plurality of ridge portions 22, the base part and the ridge portions being integrally formed, and a functional film 30 made of a metal material and covering part of the ridge portion 22. The ridge portion 22 has an upward narrowing shape that narrows in width with distance from the base part 21. The functional film 30 covers and wraps the top of the ridge portion 22, and does not cover a bottom side of the ridge portion 22 and the base part 21. A surface of the functional film 30 is rounded and bulges in a width direction of the ridge portions 22. A maximum width (WMAX) of the functional film 30 is more than or equal to a bottom width (WB) of the ridge portion 22.
Abstract:
To provide an inorganic polarizing plate which, when used in structures having different used wavelength bands, can reduce reflectance by using a common structure, making it possible to achieve a predetermined light extinction ratio. The inorganic polarizing plate has a substrate that is transparent to light in a used bandwidth, a reflective layer that is composed of grids that are formed on one surface of the substrate with a pitch that is smaller than a wavelength of light in the used bandwidth, a dielectric layer that is stacked on the reflective layer, and an absorbing layer containing FeSi fine particles.
Abstract:
There is provided a novel and improved optical body, method for manufacturing an optical body, light-emitting apparatus, and display apparatus for amusement equipment capable of improving emitted luminance and transparency, the optical body including: a base material; and a light extraction section, formed on at least one surface of the base material, that extracts internally propagated light incident inside the base material from a side face of the base material to an outside of the base material. The light extraction section includes a concave-convex structure in which at least one of concavities and convexities has a frustum shape, a fill ratio of the concave-convex structure is 15% or greater, and a light transmittance is 50% or greater.
Abstract:
To provide an inorganic polarizing plate which, when used in structures having different used wavelength bands, can reduce reflectance by using a common structure, making it possible to achieve a predetermined light extinction ratio. The inorganic polarizing plate has a substrate that is transparent to light in a used bandwidth, a reflective layer that is composed of grids that are formed on one surface of the substrate with a pitch that is smaller than a wavelength of light in the used bandwidth, a dielectric layer that is stacked on the reflective layer, and an absorbing layer containing FeSi fine particles.
Abstract:
To provide an inorganic polarizing plate which, when used in structures having different used wavelength bands, can reduce reflectance by using a common structure, making it possible to achieve a predetermined light extinction ratio. The inorganic polarizing plate has a substrate that is transparent to light in a used bandwidth, a reflective layer that is composed of grids that are formed on one surface of the substrate with a pitch that is smaller than a wavelength of light in the used bandwidth, a dielectric layer that is stacked on the reflective layer, and an absorbing layer containing FeSi fine particles.
Abstract:
There is provided an optical body including: a base material; and a light extraction unit that is formed on a surface of the base material and that extracts, to an outside of the base material, internally propagating light that is injected in an inside of the base material from a side surface of the base material. The light extraction unit is formed of a convex microlens array, and a maximum inclination angle of the convex microlens array substantially coincides with a maximum propagation angle of the internally propagating light.