Abstract:
The present invention provides an ink composition containing light-emitting nanocrystal particles and a photopolymerizable compound, wherein the photopolymerizable compound has a Log P value in the range of −1.5 to 7.0. The present invention also provides an ink composition containing light-emitting nanocrystal particles and a photopolymerizable compound, wherein the photopolymerizable compound has a Log P value in the range of −1.0 to 6.5, and the ink composition has a water (H2O) content of 90 ppm or less measured with a Karl Fischer moisture meter. The present invention also provides a light conversion layer including a plurality of pixel units, wherein the plurality of pixel units include a pixel unit containing a cured product of the ink composition, and the light conversion layer is formed of the cured product of the ink composition. The present invention also provides a color filter including the light conversion layer.
Abstract:
A dispersion contains, as essential ingredients, light-emitting nanocrystals, a polymeric dispersant having an amine value of 5 mg/KOH g or more, and a stimulation-responsive curable material that cures in response to an external stimulus.
Abstract:
Provided are a method for forming a high-definition metal pattern which including the steps of (1) forming a receiving layer on a substrate by coating the substrate with a resin composition including a urethane resin having a weight-average molecular weight of five thousand or more or a vinyl resin and a medium, (2) forming a plating-core pattern on the receiving layer by printing an ink including a particle that serves as a plating core on the receiving layer by reverse offset printing, and (3) depositing a metal on the plating-core pattern by electroless plating, a high-definition metal pattern formed by the above-described method, and an electronic component including the high-definition metal pattern.
Abstract:
There is provided an ink composition that can form a color filter pixel unit with high external quantum efficiency. An ink composition containing light-emitting nanocrystal particles, light-diffusing particles, and at least two monomers with an ethylenically unsaturated group, wherein the at least two monomers include two monomers with Hansen solubility parameters δd, δp, and δh that satisfy the following conditions: 16.0 MPa0.5≤δd
Abstract:
The present invention provides an ink composition containing light-emitting nanocrystal particles and a photopolymerizable compound, wherein the photopolymerizable compound has a Log P value in the range of −1.5 to 7.0. The present invention also provides an ink composition containing light-emitting nanocrystal particles and a photopolymerizable compound, wherein the photopolymerizable compound has a Log P value in the range of −1.0 to 6.5, and the ink composition has a water (H2O) content of 90 ppm or less measured with a Karl Fischer moisture meter. The present invention also provides a light conversion layer including a plurality of pixel units, wherein the plurality of pixel units include a pixel unit containing a cured product of the ink composition, and the light conversion layer is formed of the cured product of the ink composition. The present invention also provides a color filter including the light conversion layer.
Abstract:
A dispersion contains, as essential ingredients, light-emitting nanocrystals, a polymeric dispersant having an amine value of 5 mg/KOH g or more, and a stimulation-responsive curable material that cures in response to an external stimulus.
Abstract:
There is provided an ink composition that can form a color filter pixel unit with high external quantum efficiency. An ink composition containing light-emitting nanocrystal particles, light-diffusing particles, and at least two monomers with an ethylenically unsaturated group, wherein the at least two monomers include two monomers with Hansen solubility parameters δd, δp, and δh that satisfy the following conditions: 16.0 MPa0.5≤δd
Abstract:
A dispersion contains, as essential ingredients, light-emitting nanocrystals, a polymeric dispersant having an amine value of 5 mg/KOH g or more, and a stimulation-responsive curable material that cures in response to an external stimulus.
Abstract:
There is provided a method for forming an electrically conductive ultrafine pattern which has an excellent pattern cross-sectional shape is provided by a composite technique including a printing process and a plating process, and furthermore, by imparting excellent adhesion to each interface of a laminate including a plating core pattern, an electrically conductive ultrafine pattern which can be preferably used as a highly accurate electric circuit and a method for manufacturing the same are also provided. The method includes (1) a step of applying a resin composition to form a receiving layer on a substrate; (2) a step of printing an ink containing plating core particles by a reverse offset printing method to form a plating core pattern on the receiving layer; and (3) a step of depositing a metal on the plating core pattern formed in the step (2) by an electrolytic plating method.
Abstract:
Provided are a method for forming a high-definition metal pattern which including the steps of (1) forming a receiving layer on a substrate by coating the substrate with a resin composition including a urethane resin having a weight-average molecular weight of five thousand or more or a vinyl resin and a medium, (2) forming a plating-core pattern on the receiving layer by printing an ink including a particle that serves as a plating core on the receiving layer by reverse offset printing, and (3) depositing a metal on the plating-core pattern by electroless plating, a high-definition metal pattern formed by the above-described method, and an electronic component including the high-definition metal pattern.